Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2021
READ PUBLICATION →

Drug-Drug Interaction Potential, Cytotoxicity, and Reactive Oxygen Species Production of Salix Cortex Extracts Using Human Hepatocyte-Like HepaRG Cells.

Authors: Gomes JVD, Herz C, Helmig S, Forster N, Mewis I, Lamy E

Abstract: Herbal preparations of willow bark (Salix cortex) are available in many countries as non-prescription medicines for pain and inflammation, and also as dietary supplements. Currently only little information on toxicity and drug interaction potential of the extracts is available. This study now evaluated the effects of two Salix cortex extracts on human hepatocyte-like HepaRG cells, in view of clinically relevant CYP450 enzyme activity modulation, cytotoxicity and production of reactive oxygen species (ROS). Drug metabolism via the CYP450 enzyme system is considered an important parameter for the occurrence of drug-drug interactions, which can lead to toxicity, decreased pharmacological activity, and adverse drug reactions. We evaluated two different bark extracts standardized to 10 mg/ml phenolic content. Herein, extract S6 (S. pentandra, containing 8.15 mg/ml total salicylates and 0.08 mg/ml salicin) and extract B (industrial reference, containing 5.35 mg/ml total salicylates and 2.26 mg/ml salicin) were tested. Both Salix cortex extracts showed no relevant reduction in cell viability or increase in ROS production in hepatocyte-like HepaRG cells. However, they reduced CYP1A2 and CYP3A4 enzyme activity after 48 h at >/=25 mug/ml, this was statistically significant only for S6. CYP2C19 activity inhibition (0.5 h) was also observed at >/=25 mug/ml, mRNA expression inhibition by 48 h treatment with S6 at 25 mug/ml. In conclusion, at higher concentrations, the tested Salix cortex extracts showed a drug interaction potential, but with different potency. Given the high prevalence of polypharmacy, particularly in the elderly with chronic pain, further systematic studies of Salix species of medical interest should be conducted in the future to more accurately determine the risk of potential drug interactions.
Published in 2021
READ PUBLICATION →

Antidepressant Mechanism of Traditional Chinese Medicine Formula Xiaoyaosan in CUMS-Induced Depressed Mouse Model via RIPK1-RIPK3-MLKL Mediated Necroptosis Based on Network Pharmacology Analysis.

Authors: Yan ZY, Jiao HY, Chen JB, Zhang KW, Wang XH, Jiang YM, Liu YY, Xue Z, Ma QY, Li XJ, Chen JX

Abstract: Background: Depression is a stress-related disorder that seriously threatens people's physical and mental health. Xiaoyaosan is a classical traditional Chinese medicine formula, which has been used to treat mental depression since ancient times. More and more notice has been given to the relationship between the occurrence of necroptosis and the pathogenesis of mental disorders. Objective: The purpose of present study is to explore the potential mechanism of Xiaoyaosan for the treatment of depression using network pharmacology and experimental research, and identify the potential targets of necroptosis underlying the antidepressant mechanism of Xiaoyaosan. Methods: The mice model of depression was induced by chronic unpredictable mild stress (CUMS) for 6 weeks. Adult C57BL/6 mice were randomly divided into five groups, including control group, chronic unpredictable mild stress group, Xiaoyaosan treatment group, necrostatin-1 (Nec-1) group and solvent group. Drug intervention performed from 4(th) to 6(th) week of modeling. The mice in Xiaoyaosan treatment group received Xiaoyaosan by intragastric administration (0.254 g/kg/d), and mice in CUMS group received 0.5 ml physiological saline. Meanwhile, the mice in Nec-1 group were injected intraperitoneally (i.p.) with Nec-1 (10 mg/kg/d), and the equivalent volume of DMSO/PBS (8.3%) was injected into solvent group mice. The behavior tests such as sucrose preference test, forced swimming test and novelty-suppressed feeding test were measured to evaluate depressive-like behaviors of model mice. Then, the active ingredients in Xiaoyaosan and the related targets of depression and necroptosis were compiled through appropriate databases, while the "botanical drugs-active ingredients-target genes" network was constructed by network pharmacology analysis. The expressions of RIPK1, RIPK3, MLKL, p-MLKL were detected as critical target genes of necroptosis and the potential therapeutic target compounds of Xiaoyaosan. Furthermore, the levels of neuroinflammation and microglial activation of hippocampus were measured by detecting the expressions of IL-1beta, Lipocalin-2 and IBA1, and the hematoxylin and eosin (H&E) stained was used to observe the morphology in hippocampus sections. Results: After 6-weeks of modeling, the behavioral data showed that mice in CUMS group and solvent group had obvious depressive-like behaviors, and the medication of Xiaoyaosan or Nec-1 could improve these behavioral changes. A total of 96 active ingredients in Xiaoyaosan which could regulate the 23 key target genes were selected from databases. Xiaoyaosan could alleviate the core target genes in necroptosis and improve the hippocampal function and neuroinflammation in depressed mice. Conclusion: The activation of necroptosis existed in the hippocampus of CUMS-induced mice, which was closely related to the pathogenesis of depression. The antidepressant mechanism of Xiaoyaosan included the regulation of multiple targets in necroptosis. It also suggested that necroptosis could be a new potential target for the treatment of depression.
Published in 2021
READ PUBLICATION →

Identification of the Active Constituents and Significant Pathways of Shen-qi-Yi-zhu Decoction on Antigastric Cancer: A Network Pharmacology Research and Experimental Validation.

Authors: Zeng S, Yu Z, Xu X, Liu Y, Li J, Zhao D, Song C, Lu H, Zhao Y, Lu W, Zou X

Abstract: Shen-qi-Yi-zhu decoction (SQYZD) is an empirical prescription with antigastric cancer (GC) property created by Xu Jing-fan, a National Chinese Medical Master. However, its underlying mechanisms are still unclear. Based on network pharmacology and experimental verification, this study puts forward a systematic method to clarify the anti-GC mechanism of SQYZD. The active ingredients of SQYZD and their potential targets were acquired from the TCMSP database. The target genes related to GC gathered from GeneCards, DisGeNET, OMIM, TTD, and DrugBank databases were imported to establish protein-protein interaction (PPI) networks in GeneMANIA. Cytoscape was used to establish the drug-ingredients-targets-disease network. The hub target genes collected from the SQYZD and GC were parsed via GO and KEGG analysis. Our findings from network pharmacology were successfully validated using an in vitro HGC27 cell model experiment. In a word, this study proves that the combination of network pharmacology and in vitro experiments is effective in clarifying the potential molecular mechanism of traditional Chinese medicine (TCM).
Published in 2021
READ PUBLICATION →

Molecular modelling and de novo fragment-based design of potential inhibitors of beta-tubulin gene of Necator americanus from natural products.

Authors: Agyapong O, Asiedu SO, Kwofie SK, Miller WA 3rd, Parry CS, Sowah RA, Wilson MD

Abstract: The emergence of drug resistance against the known hookworm drugs namely albendazole and mebendazole and their reduced efficacies necessitate the need for new drugs. Chemically diverse natural products present plausible templates to augment hookworm drug discovery. The present work utilized pharmacoinformatics techniques to predict African natural compounds ZINC95486082, ZINC95486052 and euphohelionon as potential inhibitory molecules of the hookworm Necator americanus beta tubulin gene. A library of 3390 compounds was screened against a homology-modelled structure of beta tubulin. The docking results obtained from AutoDock Vina was validated with an acceptable area under the curve (AUC) of 0.714 computed from the receiver operating characteristic (ROC) curve. The three selected compounds had favourable binding affinities and were predicted to form no interactions with the resistance-associated mutations Phe167, Glu198 and Phe200. The compounds were predicted as anthelmintics using a Bayesian-based technique and were pharmacologically profiled to be druglike. Further molecular dynamics simulations and MM-PBSA calculations showed the compounds as promising anthelmintic drug leads. Novel critical residues comprising Leu246, Asn247 and Asn256 were also predicted for binding. Euphohelionon was selected as a template for the de novo fragment-based design of five compounds labelled A1, A2, A3, A4 and A5; with four of them having SAscore values below 6, denoting easy synthesis. All the five de novo molecules docked firmly in the binding pocket of the beta tubulin with no binding interactions with the three known resistance mutation residues. Binding energies of -8.2, -7.6, -7.3, -7.2 and -6.8 kcal/mol were obtained for A1, A2, A3, A4 and A5, respectively. The identified compounds can serve as treasure troves from which future potent anthelmintics can be designed. The current study strives to assuage the hookworm disease burden, especially making available molecules with the potential to circumvent the chemoresistance.
Published in 2021
READ PUBLICATION →

Using the Symptom Patient Similarity Network to Explore the Difference between the Chinese and Western Medicine Pathways of Ischemic Stroke and its Comorbidities.

Authors: Zhang L, Han S, Zhao M, Zhang R, Zhang X, Zhang J, Liu X, He Y, He Z, Dong Y, Hou X, Mou Z, He L, Zhou H, Yang J, Huang X, Hu Y, Zhang Y, Zhang L, Chen Z, Li X, Tan Y, Cao K, Meng W, Zhong L

Abstract: Methods: Individualized treatment of traditional Chinese medicine (TCM) provides a theoretical basis for the study of the personalized classification of complex diseases. Utilizing the TCM clinical electronic medical records (EMRs) of 7170 in patients with IS, a patient similarity network (PSN) with shared symptoms was constructed. Next, patient subgroups were identified using community detection methods and enrichment analyses were performed. Finally, genetic data of symptoms, herbs, and drugs were used for pathway and GO analysis to explore the characteristics of pathways of subgroups and to compare the similarities and differences in genetic pathways of herbs and drugs from the perspective of molecular pathways of symptoms. Results: We identified 34 patient modules from the PSN, of which 7 modules include 98.48% of the whole cases. The 7 patient subgroups have their own characteristics of risk factors, complications, and comorbidities and the underlying genetic pathways of symptoms, drugs, and herbs. Each subgroup has the largest number of herb pathways. For specific symptom pathways, the number of herb pathways is more than that of drugs. Conclusion: The research of disease classification based on community detection of symptom-shared patient networks is practical; the common molecular pathway of symptoms and herbs reflects the rationality of TCM herbs on symptoms and the wide range of therapeutic targets.
Published in 2021
READ PUBLICATION →

Effects of ex vivo Extracorporeal Membrane Oxygenation Circuits on Sequestration of Antimicrobial Agents.

Authors: Zhang Y, Hu H, Zhang Q, Ou Q, Zhou H, Sha T, Zeng Z, Wu J, Lu J, Chen Z

Abstract: Objectives: Our ex vivo study was designed to determine the sequestration of teicoplanin, tigecycline, micafungin, meropenem, polymyxin B, caspofungin, cefoperazone sulbactam, and voriconazole in extracorporeal membrane oxygenation (ECMO) circuits. Methods: Simulated closed-loop ECMO circuits were prepared using 2 types of blood-primed ECMO. After the circulation was stabilized, the study drugs were injected into the circuit. Blood samples were collected at 2, 5, 15, 30 min, 1, 3, 6, 12, and 24 h after injection. Drug concentrations were measured by high-performance liquid chromatography-tandem mass spectrometry. Control groups were stored at 4 degrees C after 3, 6, 12, and 24 h immersing in a water bath at 37 degrees C to observe spontaneous drug degradation. Results: Twenty-six samples were analyzed. The average drug recoveries from the ECMO circuits and control groups at 24 h relative to baseline were 67 and 89% for teicoplanin, 100 and 145% for tigecycline, 67 and 99% for micafungin, 45 and 75% for meropenem, 62 and 60% for polymyxin B, 83 and 85% for caspofungin, 79 and 98% for cefoperazone, 75 and 87% for sulbactam, and 60 and 101% for voriconazole, respectively. Simple linear regression showed no significant correlation between lipophilicity (r (2) = 0.008, P = 0.225) or the protein binding rate (r (2) = 0.168, P = 0.479) of drugs and the extent of drug loss in the ECMO circuits. Conclusions: In the two ECMO circuits, meropenem and voriconazole were significantly lost, cefoperazone was slightly lost, while tigecycline and caspofungin were not lost. Drugs with high lipophilicity were lost more in the Maquet circuit than in the Sorin circuit. This study needs more in vivo studies with larger samples for further confirmation, and it suggests that therapeutic drug concentration monitoring should be strongly considered during ECMO.
Published in 2021
READ PUBLICATION →

Effects of cytokine signaling inhibition on inflammation-driven tissue remodeling.

Authors: Bignold R, Johnson JR

Abstract: Fibrosis is a common condition that can affect all body tissues, driven by unresolved tissue inflammation and resulting in tissue dysfunction and organ failure that could ultimately lead to death. A myriad of factors are thought to contribute to fibrosis and, although it is relatively common, treatments focusing on reversing fibrosis are few and far between. The process of fibrosis involves a variety of cell types, including epithelial, endothelial, and mesenchymal cells, as well as immune cells, which have been shown to produce pro-fibrotic cytokines. Advances in our understanding of the molecular mechanisms of inflammation-driven tissue fibrosis and scar formation have led to the development of targeted therapeutics aiming to prevent, delay, or even reverse tissue fibrosis. In this review, we describe promising targets and agents in development, with a specific focus on cytokines that have been well-described to play a role in fibrosis: IL-1, TNF-alpha, IL-6, and TGF-beta. An array of small molecule inhibitors, natural compounds, and biologics have been assessed in vivo, in vivo, and in the clinic, demonstrating the capacity to either directly interfere with pro-fibrotic pathways or to block intracellular enzymes that control fibrosis-related signaling pathways. Targeting pro-fibrotic cytokines, potentially via a multi-pronged approach, holds promise for the treatment of inflammation-driven fibrotic diseases in numerous organs. Despite the complexity of the interplay of cytokines in fibrotic tissues, the breadth of the currently ongoing research targeting cytokines suggests that these may hold the key to mitigating tissue fibrosis and reducing organ damage in the future.
Published in 2021
READ PUBLICATION →

Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study.

Authors: Bitew M, Desalegn T, Demissie TB, Belayneh A, Endale M, Eswaramoorthy R

Abstract: Computer aided toxicity and pharmacokinetic prediction studies attracted the attention of pharmaceutical industries as an alternative means to predict potential drug candidates. In the present study, in-silico pharmacokinetic properties (ADME), drug-likeness, toxicity profiles of sixteen antidiabetic flavonoids that have ideal bidentate chelating sites for metal ion coordination were examined using SwissADME, Pro Tox II, vNN and ADMETlab web tools. Density functional theory (DFT) calculations were also employed to calculate quantum chemical descriptors of the compounds. Molecular docking studies against human alpha amylase were also conducted. The results were compared with the control drugs, metformin and acarbose. The drug-likeness prediction results showed that all flavonoids, except myricetin, were found to obey Lipinski's rule of five for their drug like molecular nature. Pharmacokinetically, chrysin, wogonin, genistein, baicalein, and apigenin showed best absorption profile with human intestinal absorption (HIA) value of >/= 30%, compared to the other flavonoids. Baicalein, butein, ellagic acid, eriodyctiol, Fisetin and quercetin were predicted to show carcinogenicity. The flavonoid derivatives considered in this study are predicted to be suitable molecules for CYP3A probes, except eriodyctiol which interacts with P-glycoprotein (p-gp). The toxicological endpoints prediction analysis showed that the median lethal dose (LD50) values range from 159-3919 mg/Kg, of which baicalein and quercetin are found to be mutagenic whereas butein is found to be the only immunotoxin. Molecular docking studies showed that the significant interaction (-7.5 to -8.3 kcal/mol) of the studied molecules in the binding pocket of the alpha-amylase protein relative to the control metformin with the crucial amino acids Asp 197, Glu 233, Asp 197, Glu 233, Trp 59, Tyr 62, His 101, Leu 162, Arg 195, His 299 and Leu 165. Chrysin was predicted to be a ligand with high absorption and lipophilicity with 84.6% absorption compared to metformin (78.3%). Moreover, quantum chemical, ADMET, drug-likeness and molecular docking profiles predicted that chrysin is a good bidentate ligand.
Published in 2021
READ PUBLICATION →

Bile Acids Gate Dopamine Transporter Mediated Currents.

Authors: Romanazzi T, Zanella D, Cheng MH, Smith B, Carter AM, Galli A, Bahar I, Bossi E

Abstract: Bile acids (BAs) are molecules derived from cholesterol that are involved in dietary fat absorption. New evidence supports an additional role for BAs as regulators of brain function. Sterols such as cholesterol interact with monoamine transporters, including the dopamine (DA) transporter (DAT) which plays a key role in DA neurotransmission and reward. This study explores the interactions of the BA, obeticholic acid (OCA), with DAT and characterizes the regulation of DAT activity via both electrophysiology and molecular modeling. We expressed murine DAT (mDAT) in Xenopus laevis oocytes and confirmed its functionality. Next, we showed that OCA promotes a DAT-mediated inward current that is Na(+)-dependent and not regulated by intracellular calcium. The current induced by OCA was transient in nature, returning to baseline in the continued presence of the BA. OCA also transiently blocked the DAT-mediated Li(+)-leak current, a feature that parallels DA action and indicates direct binding to the transporter in the absence of Na(+). Interestingly, OCA did not alter DA affinity nor the ability of DA to promote a DAT-mediated inward current, suggesting that the interaction of OCA with the transporter is non-competitive, regarding DA. Docking simulations performed for investigating the molecular mechanism of OCA action on DAT activity revealed two potential binding sites. First, in the absence of DA, OCA binds DAT through interactions with D421, a residue normally involved in coordinating the binding of the Na(+) ion to the Na2 binding site (Borre et al., J. Biol. Chem., 2014, 289, 25764-25773; Cheng and Bahar, Structure, 2015, 23, 2171-2181). Furthermore, we uncover a separate binding site for OCA on DAT, of equal potential functional impact, that is coordinated by the DAT residues R445 and D436. Binding to that site may stabilize the inward-facing (IF) open state by preventing the re-formation of the IF-gating salt bridges, R60-D436 and R445-E428, that are required for DA transport. This study suggests that BAs may represent novel pharmacological tools to regulate DAT function, and possibly, associated behaviors.
Published in 2021
READ PUBLICATION →

Repurposing of Drugs for SARS-CoV-2 Using Inverse Docking Fingerprints.

Authors: Jukic M, Kores K, Janezic D, Bren U

Abstract: Severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 is a virus that belongs to the Coronaviridae family. This group of viruses commonly causes colds but possesses a tremendous pathogenic potential. In humans, an outbreak of SARS caused by the SARS-CoV virus was first reported in 2003, followed by 2012 when the Middle East respiratory syndrome coronavirus (MERS-CoV) led to an outbreak of Middle East respiratory syndrome (MERS). Moreover, COVID-19 represents a serious socioeconomic and global health problem that has already claimed more than four million lives. To date, there are only a handful of therapeutic options to combat this disease, and only a single direct-acting antiviral, the conditionally approved remdesivir. Since there is an urgent need for active drugs against SARS-CoV-2, the strategy of drug repurposing represents one of the fastest ways to achieve this goal. An in silico drug repurposing study using two methods was conducted. A structure-based virtual screening of the FDA-approved drug database on SARS-CoV-2 main protease was performed, and the 11 highest-scoring compounds with known 3CL(pro) activity were identified while the methodology was used to report further 11 potential and completely novel 3CL(pro) inhibitors. Then, inverse molecular docking was performed on the entire viral protein database as well as on the Coronaviridae family protein subset to examine the hit compounds in detail. Instead of target fishing, inverse docking fingerprints were generated for each hit compound as well as for the five most frequently reported and direct-acting repurposed drugs that served as controls. In this way, the target-hitting space was examined and compared and we can support the further biological evaluation of all 11 newly reported hits on SARS-CoV-2 3CL(pro) as well as recommend further in-depth studies on antihelminthic class member compounds. The authors acknowledge the general usefulness of this approach for a full-fledged inverse docking fingerprint screening in the future.