Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on May 28, 2019
READ PUBLICATION →

Integrative Data Mining, Scaffold Analysis, and Sequential Binary Classification Models for Exploring Ligand Profiles of Hepatic Organic Anion Transporting Polypeptides.

Authors: Turkova A, Jain S, Zdrazil B

Abstract: Hepatocellular organic anion transporting polypeptides (OATP1B1, OATP1B3, and OATP2B1) are important for proper liver function and the regulation of the drug elimination process. Understanding their roles in different conditions of liver toxicity and cancer requires an in-depth investigation of hepatic OATP-ligand interactions and selectivity. However, such studies are impeded by the lack of crystal structures, the promiscuous nature of these transporters, and the limited availability of reliable bioactivity data, which are spread over different data sources in the open domain. To this end, we integrated ligand bioactivity data for hepatic OATPs from five open data sources (ChEMBL, the UCSF-FDA TransPortal database, DrugBank, Metrabase, and IUPHAR) in a semiautomatic KNIME workflow. Highly curated data sets were analyzed with respect to enriched scaffolds, and their activity profiles and interesting scaffold series providing indication for selective, dual-, or pan-inhibitory activity toward hepatic OATPs could be extracted. In addition, a sequential binary modeling approach revealed common and distinctive ligand features for inhibitory activity toward the individual transporters. The workflows designed for integrating data from open sources, data curation, and subsequent substructure analyses are freely available and fully adaptable. The new data sets for inhibitors and substrates of hepatic OATPs as well as the insights provided by the feature and substructure analyses will guide future structure-based studies on hepatic OATP-ligand interactions and selectivity.
Published on May 28, 2019
READ PUBLICATION →

Control of multilayer biological networks and applied to target identification of complex diseases.

Authors: Zheng W, Wang D, Zou X

Abstract: BACKGROUND: Networks have been widely used to model the structures of various biological systems. The ultimate aim of research on biological networks is to steer biological system structures to desired states by manipulating signals. Despite great advances in the linear control of single-layer networks, it has been observed that many complex biological systems have a multilayer networked structure and extremely complicated nonlinear processes. RESULT: In this study, we propose a general framework for controlling nonlinear dynamical systems with multilayer networked structures by formulating the problem as a minimum union optimization problem. In particular, we offer a novel approach for identifying the minimal driver nodes that can steer a multilayered nonlinear dynamical system toward any desired dynamical attractor. Three disease-related biology multilayer networks are used to demonstrate the effectiveness of our approaches. Moreover, in the set of minimum driver nodes identified by the algorithm we proposed, we confirmed that some nodes can act as drug targets in the biological experiments. Other nodes have not been reported as drug targets; however, they are also involved in important biological processes from existing literature. CONCLUSIONS: The proposed method could be a promising tool for determining higher drug target enrichment or more meaningful steering nodes for studying complex diseases.
Published on May 23, 2019
READ PUBLICATION →

AICD: an integrated anti-inflammatory compounds database for drug discovery.

Authors: Wang K, Xiao J, Liu X, Jiang Z, Zhan Y, Yin T, He L, Zhang F, Xing S, Chen B, Li Y, Zhang F, Kuang Z, Du B, Gu J

Abstract: Systemic or local inflammation drives the pathogenesis of various human diseases. Small compounds with anti-inflammatory properties hold great potential for clinical translation. Over recent decades, many compounds have been screened for their action against inflammation-related targets. Databases that integrate the physicochemical properties and bioassay results of these compounds are lacking. We created an "Anti-Inflammatory Compounds Database" (AICD) to deposit compounds with potential anti-inflammation activities. A total of 232 inflammation-related targets were recruited by the AICD. Gene set enrichment analysis showed that these targets were involved in various human diseases. Bioassays of these targets were collected from open-access databases and adopted to extract 79,781 small molecules with information on chemical properties, candidate targets, bioassay models and bioassay results. Principal component analysis demonstrated that these deposited compounds were closely related to US Food and Drug Administration-approved drugs with respect to chemical space and chemical properties. Finally, pathway-based screening for drug combination/multi-target drugs provided a case study for drug discovery using the AICD. The AICD focuses on inflammation-related drug targets and contains substantial candidate compounds with high chemical diversity and good drug-like properties. It could be serviced for the discovery of anti-inflammatory medicines and can be accessed freely at http://956023.ichengyun.net/AICD/index.php .
Published on May 22, 2019
READ PUBLICATION →

Discovering Biomarkers and Pathways Shared by Alzheimer's Disease and Ischemic Stroke to Identify Novel Therapeutic Targets.

Authors: Rahman MR, Islam T, Shahjaman M, Zaman T, Faruquee HM, Jamal MAHM, Huq F, Quinn JMW, Moni MA

Abstract: Background and objectives: Alzheimer's disease (AD) is a progressive neurodegenerative disease that results in severe dementia. Having ischemic strokes (IS) is one of the risk factors of the AD, but the molecular mechanisms that underlie IS and AD are not well understood. We thus aimed to identify common molecular biomarkers and pathways in IS and AD that can help predict the progression of these diseases and provide clues to important pathological mechanisms. Materials and Methods: We have analyzed the microarray gene expression datasets of IS and AD. To obtain robust results, combinatorial statistical methods were used to analyze the datasets and 26 transcripts (22 unique genes) were identified that were abnormally expressed in both IS and AD. Results: Gene Ontology (GO) and KEGG pathway analyses indicated that these 26 common dysregulated genes identified several altered molecular pathways: Alcoholism, MAPK signaling, glycine metabolism, serine metabolism, and threonine metabolism. Further protein-protein interactions (PPI) analysis revealed pathway hub proteins PDE9A, GNAO1, DUSP16, NTRK2, PGAM2, MAG, and TXLNA. Transcriptional and post-transcriptional components were then identified, and significant transcription factors (SPIB, SMAD3, and SOX2) found. Conclusions: Protein-drug interaction analysis revealed PDE9A has interaction with drugs caffeine, gamma-glutamyl glycine, and 3-isobutyl-1-methyl-7H-xanthine. Thus, we identified novel putative links between pathological processes in IS and AD at transcripts levels, and identified possible mechanistic and gene expression links between IS and AD.
Published on May 22, 2019
READ PUBLICATION →

Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees.

Authors: Li L, Koh CC, Reker D, Brown JB, Wang H, Lee NK, Liow HH, Dai H, Fan HM, Chen L, Wei DQ

Abstract: Identifying potential protein-ligand interactions is central to the field of drug discovery as it facilitates the identification of potential novel drug leads, contributes to advancement from hits to leads, predicts potential off-target explanations for side effects of approved drugs or candidates, as well as de-orphans phenotypic hits. For the rapid identification of protein-ligand interactions, we here present a novel chemogenomics algorithm for the prediction of protein-ligand interactions using a new machine learning approach and novel class of descriptor. The algorithm applies Bayesian Additive Regression Trees (BART) on a newly proposed proteochemical space, termed the bow-pharmacological space. The space spans three distinctive sub-spaces that cover the protein space, the ligand space, and the interaction space. Thereby, the model extends the scope of classical target prediction or chemogenomic modelling that relies on one or two of these subspaces. Our model demonstrated excellent prediction power, reaching accuracies of up to 94.5-98.4% when evaluated on four human target datasets constituting enzymes, nuclear receptors, ion channels, and G-protein-coupled receptors . BART provided a reliable probabilistic description of the likelihood of interaction between proteins and ligands, which can be used in the prioritization of assays to be performed in both discovery and vigilance phases of small molecule development.
Published on May 22, 2019
READ PUBLICATION →

Computational models for the prediction of adverse cardiovascular drug reactions.

Authors: Jamal S, Ali W, Nagpal P, Grover S, Grover A

Abstract: BACKGROUND: Predicting adverse drug reactions (ADRs) has become very important owing to the huge global health burden and failure of drugs. This indicates a need for prior prediction of probable ADRs in preclinical stages which can improve drug failures and reduce the time and cost of development thus providing efficient and safer therapeutic options for patients. Though several approaches have been put forward for in silico ADR prediction, there is still room for improvement. METHODS: In the present work, we have used machine learning based approach for cardiovascular (CV) ADRs prediction by integrating different features of drugs, biological (drug transporters, targets and enzymes), chemical (substructure fingerprints) and phenotypic (therapeutic indications and other identified ADRs), and their two and three level combinations. To recognize quality and important features, we used minimum redundancy maximum relevance approach while synthetic minority over-sampling technique balancing method was used to introduce a balance in the training sets. RESULTS: This is a rigorous and comprehensive study which involved the generation of a total of 504 computational models for 36 CV ADRs using two state-of-the-art machine-learning algorithms: random forest and sequential minimization optimization. All the models had an accuracy of around 90% and the biological and chemical features models were more informative as compared to the models generated using chemical features. CONCLUSIONS: The results obtained demonstrated that the predictive models generated in the present study were highly accurate, and the phenotypic information of the drugs played the most important role in drug ADRs prediction. Furthermore, the results also showed that using the proposed method, different drugs properties can be combined to build computational predictive models which can effectively predict potential ADRs during early stages of drug development.
Published on May 21, 2019
READ PUBLICATION →

Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome.

Authors: Yang Z, Zeng X, Tsui SK

Abstract: BACKGROUND: Mycobacterium tuberculosis (MTB) is a common bacterium causing tuberculosis and remains a major pathogen for mortality. Although the MTB genome has been extensively explored for two decades, the functions of 27% (1051/3906) of encoded proteins have yet to be determined and these proteins are annotated as hypothetical proteins. METHODS: We assigned functions to these hypothetical proteins using SSEalign, a newly designed algorithm utilizing structural information. A set of rigorous criteria was applied to these annotations in order to examine whether they were supported by each parameter. Virulence factors and potential drug targets were also screened among the annotated proteins. RESULTS: For 78% (823/1051) of the hypothetical proteins, we could identify homologs in Escherichia coli and Salmonella typhimurium by using SSEalign. Functional classification analysis indicated that 62.2% (512/823) of these annotated proteins were enzymes with catalytic activities and most of these annotations were supported by at least two other independent parameters. A relatively high proportion of transporter was identified in MTB genome, indicating the potential frequent transportation of frequent absorbing essential metabolites and excreting toxic materials in MTB. Twelve virulence factors and ten vaccine candidates were identified within these MTB hypothetical proteins, including two genes (rpoS and pspA) related to stress response to the host immune system. Furthermore, we have identified six novel drug target candidates among our annotated proteins, including Rv0817 and Rv2927c, which could be used for treating MTB infection. CONCLUSIONS: Our annotation of the MTB hypothetical proteins will probably serve as a useful dataset for future MTB studies.
Published on May 15, 2019
READ PUBLICATION →

Multistep Synthesis of 1,2,4-Oxadiazoles via DNA-Conjugated Aryl Nitrile Substrates.

Authors: Du HC, Bangs MC, Simmons N, Matzuk MM

Abstract: A multistep protocol for the synthesis of 3,5-disubstituted 1,2,4-oxadiazoles on DNA-chemical conjugates has been developed. A set of six DNA-connected aryl nitriles were converted to corresponding amidoximes with hydroxylamine followed by the O-acylation with a series of aryl and aliphatic carboxylic acids. After cyclodehydration of the O-acyl amidoximes by heating at 90 degrees C in pH 9.5 borate buffer for 2 h, the desired oxadiazole products were observed in 51-92% conversion with the cleavage of O-acylamidoximes as the major side-product. The reported protocol paves the way for the synthesis of oxadiazole core-focused DNA-encoded chemical libraries.
Published on May 9, 2019
READ PUBLICATION →

BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules.

Authors: Tuwani R, Wadhwa S, Bagler G

Abstract: The dichotomy of sweet and bitter tastes is a salient evolutionary feature of human gustatory system with an innate attraction to sweet taste and aversion to bitterness. A better understanding of molecular correlates of bitter-sweet taste gradient is crucial for identification of natural as well as synthetic compounds of desirable taste on this axis. While previous studies have advanced our understanding of the molecular basis of bitter-sweet taste and contributed models for their identification, there is ample scope to enhance these models by meticulous compilation of bitter-sweet molecules and utilization of a wide spectrum of molecular descriptors. Towards these goals, our study provides a structured compilation of bitter, sweet and tasteless molecules and state-of-the-art machine learning models for bitter-sweet taste prediction (BitterSweet). We compare different sets of molecular descriptors for their predictive performance and further identify important features as well as feature blocks. The utility of BitterSweet models is demonstrated by taste prediction on large specialized chemical sets such as FlavorDB, FooDB, SuperSweet, Super Natural II, DSSTox, and DrugBank. To facilitate future research in this direction, we make all datasets and BitterSweet models publicly available, and present an end-to-end software for bitter-sweet taste prediction based on freely available chemical descriptors.
Published on May 3, 2019
READ PUBLICATION →

Disruption of podocyte cytoskeletal biomechanics by dasatinib leads to nephrotoxicity.

Authors: Calizo RC, Bhattacharya S, van Hasselt JGC, Wei C, Wong JS, Wiener RJ, Ge X, Wong NJ, Lee JJ, Cuttitta CM, Jayaraman G, Au VH, Janssen W, Liu T, Li H, Salem F, Jaimes EA, Murphy B, Campbell KN, Azeloglu EU

Abstract: Nephrotoxicity is a critical adverse event that leads to discontinuation of kinase inhibitor (KI) treatment. Here we show, through meta-analyses of FDA Adverse Event Reporting System, that dasatinib is associated with high risk for glomerular toxicity that is uncoupled from hypertension, suggesting a direct link between dasatinib and podocytes. We further investigate the cellular effects of dasatinib and other comparable KIs with varying risks of nephrotoxicity. Dasatinib treated podocytes show significant changes in focal adhesions, actin cytoskeleton, and morphology that are not observed with other KIs. We use phosphoproteomics and kinome profiling to identify the molecular mechanisms of dasatinib-induced injury to the actin cytoskeleton, and atomic force microscopy to quantify impairment to cellular biomechanics. Furthermore, chronic administration of dasatinib in mice causes reversible glomerular dysfunction, loss of stress fibers, and foot process effacement. We conclude that dasatinib induces nephrotoxicity through altered podocyte actin cytoskeleton, leading to injurious cellular biomechanics.