Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2022
READ PUBLICATION →

Do proton pump inhibitors affect the effectiveness of chemotherapy in colorectal cancer patients? A systematic review with meta-analysis.

Authors: Lin WY, Wang SS, Kang YN, Porpiglia AS, Chang Y, Huang CH, Bhimani R, Abdul-Lattif E, Azmat M, Wang TH, Lin YS, Chang YC, Chi KY

Abstract: Proton pump inhibitors (PPI), one of the most commonly prescribed medications, carry a myriad of adverse events. For colorectal cancer (CRC) patients, it still remains unclear whether the concurrent use of proton pump inhibitors (PPI) would negatively affect chemotherapy. PubMed, Medline, Embase, and Cochrane Library were searched from inception to 10 June 2022, to identify relevant studies involving CRC patients receiving chemotherapy and reporting comparative survival outcomes between PPI users and non-users. Meta-analyses were performed using random-effects models. We identified 16 studies involving 8,188 patients (PPI = 1,789; non-PPI = 6,329) receiving either capecitabine-based or fluorouracil-based regimens. The overall survival (HR, 1.02; 95% CI, 0.91 to 1.15; I(2) = 0%) and progression-free survival (HR, 1.15; 95% CI, 0.98 to 1.35; I(2) = 29%) were similar between PPI users and non-users in patients taking capecitabine-based regimens, with low statis-tical heterogeneity. Although the subgroup analysis indicated that early-stage cancer patients taking capecitabine monotherapy with concurrent PPI had a significantly higher disease progression rate (HR, 1.96; 95% CI, 1.21 to 3.16; I(2) = 0%) than those who did not use PPIs, both groups had comparable all-cause mortality (HR, 1.31; 95% CI, 0.75 to 2.29; I(2) = 0%). On the other hand, there was little difference in both OS and PFS in both early- and end-stage patients taking capecitabine combination therapy between PPI users and non-users. Conversely, the use of concomitant PPI in patients taking fluorouracil-based regimens contributed to a marginally significant higher all-cause mortality (HR, 1.18; 95% CI, 1.00 to 1.40; I(2) = 74%), but with high statistical heterogeneity. In conclusion, PPI has little survival influence on CRC patients treated with capecitabine-based regimens, especially in patients taking capecitabine combination therapy. Thus, it should be safe for clinicians to prescribe PPI in these patients. Although patients treated with fluorouracil-based regimens with concomitant PPI trended toward higher all-cause mortality, results were subject to considerable heterogeneity. Systematic Review Registration: identifier https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022338161.
Published in 2022
READ PUBLICATION →

Mechanism of Action of a Chinese Herbal Compound Containing Quercetin, Luteolin, and Kaempferol in the Treatment of Vitiligo Based on Network Pharmacology and Experimental Verification.

Authors: Xu Z, Xie Y, Song J, Huang J, Shi W

Abstract: OBJECTIVE: This study aimed to explore the mechanisms of Baishi tablets (BSTs) in the treatment of vitiligo through network pharmacology-based identification and experimental validation. METHODS: In brief, the compounds and related targets of BST were extracted from the TCMSP database, and disease information was obtained from the OMIM, GeneCards, PharmGkb, TTD, and DrugBank databases. A Venn diagram was generated to visualize the common targets of BST and vitiligo. GO and KEGG analyses were performed to explore the potential biological processes and signaling pathways. The PPI network and core gene subnetwork were constructed using STRING and Cytoscape software. In addition, the measurement of apoptosis in PIG1 cells and intracellular reactive oxygen species were measured using quercetin (QU), luteolin (LU), and kaempferol (KA) to protect melanocytes from oxidative stress. RESULTS: A total of 55 compounds with 236 targets and 1205 vitiligo-related genes were obtained from the TCMSP database. GO and KEGG analyses were performed to explore the potential biological processes and signaling pathways, revealing that BST may cure vitiligo by influencing the biological processes of cellular oxidative stress and related signaling pathways. A critical subnetwork was obtained with 13 core genes by analyzing the PPI network, which includes HMOX1, CXCL8, CCL2, IL6, MAPK8, CASP3, PTGS2, AKT1, IL1B, MYC, TP53, IFNG, and IL2. Furthermore, a molecular docking analysis was conducted to simulate the combination of compounds and gene proteins, reflecting that QU, LU, and KA can strongly bind the core genes. Through a series of experimental validations, we found that QU, LU, and KA could attenuate H(2)O(2)-induced apoptosis in melanocytes. Further evidence revealed that QU, LU, and KA could enhance the scavenging of intracellular reactive oxygen species (ROS). CONCLUSION: Based on the results of network pharmacology analysis and experimental verification, QA, LU, and KA can be utilized to protect PIG1 cells by inhibiting oxidative stress and reducing the intracellular level of ROS. This may explain the underlying mechanism of BST therapy and provide a novel strategy for the treatment of vitiligo.
Published in 2022
READ PUBLICATION →

Pharmacological mechanisms of Fuzheng Huayu formula for Aristolochic acid I-induced kidney fibrosis through network pharmacology.

Authors: Wang F, Wang S, Wang J, Huang K, Chen G, Peng Y, Liu C, Tao Y

Abstract: Renal fibrosis, characterized by the destruction of renal tubules and interstitial capillaries and the accumulation of extracellular matrix proteins, is a common outcome of chronic renal diseases and has a wide spectrum of etiologies. Fibrosis can affect any organ and has similar pathological mechanisms. Fuzheng Huayu formula (FZHY), as the approved anti-liver fibrosis medicine in China, also can inhibit the kidney fibrosis induced by HgCl(2) or unilateral ureteral obstruction. However, little is known about the mechanisms underlying the beneficial effects of FZHY on renal fibrosis. This study aimed to identify the mechanisms of FZHY acts on renal fibrosis through network pharmacological analysis and in vivo experiments. Data from online databases were mined and screened to predict the target related genes of FZHY acts on renal fibrosis. The STRING and Cytoscape were used to construct the protein-protein interaction (PPI) networks for FZHY and CKD target proteins. Mouse models with CKD induced by Aristolochic Acid I (AAI) were used to validate the effects of FZHY on renal fibrosis and their underlying mechanisms by detecting kidney function, renal fibrosis, and related intersection genes. A total of 129 FZHY-CKD crossover proteins were filtered and constructed into a protein-protein interaction network complex and designated as the potential targets of FZHY. One of the highest-scoring genes, FOS, and its related signaling pathways were more activated in CKD. The results demonstrated that FZHY can exert an anti-renal fibrosis effect by improving the levels of serum creatinine and blood urea nitrogen and alleviating excessive collagen deposition in kidney tissue, FZHY also could reduce the levels of TNF-alpha, IL-1beta, and IL-6 and inhibit the expression of MAPK/FOS signal molecules. Our study findings provide insights into predicting the effects of FZHY on CKD through network pharmacology. FZHY can protect the kidney from inflammatory injury caused by AAI and can antagonize inflammatory factor-stimulated MAPK/FOS activation in fibrotic kidneys. These effects constitute the mechanisms of FZHY for renal fibrosis.
Published in 2022
READ PUBLICATION →

A novel BCL11A polymorphism influences gene expression, therapeutic response and epilepsy risk: A multicenter study.

Authors: Wang S, Cai X, Liu S, Zhou Q, Wang T, Du S, Wang D, Yang F, Wu Q, Han Y

Abstract: BACKGROUND: Genetic factors have been found to be associated with the efficacy and adverse reactions of antiseizure medications. BCL11A is an important regulator of the development of neuronal networks. However, the role of BCL11A in epilepsy remains unclear. This study aimed to evaluate the genetic association of BCL11A with the susceptibility to develop epileptic seizures and therapeutic response of patients with epilepsy in Han Chinese. METHODS: We matched 450 epilepsy cases with 550 healthy controls and 131 drug-resistant epilepsy patients with 319 drug-responsive epilepsy patients from two different centers. Genetic association analysis, genetic interaction analysis, expression quantitative trait loci analysis and protein-protein interaction analysis were conducted. RESULTS: Our results showed that rs2556375 not only increases susceptibility to develop epileptic seizures (OR = 2.700, 95% = 1.366-5.338, p = 0.004 and OR = 2.984, 95% = 1.401-6.356, p = 0.005, respectively), but also increases the risk of drug resistance(OR = 21.336, 95%CI =2.489-183.402, p = 0.005). The interaction between rs2556375 and rs12477097 results in increased risk for pharma coresistant. In addition, rs2556375 regulated BCL11A expression in human brain tissues (p = 0.0096 and p = 0.033, respectively). Furthermore, the protein encoded by BCL11A interacted with targets of approved antiepileptic drugs. CONCLUSION: BCL11A may be a potential therapeutic target for epilepsy. Rs2556375 may increase the risks of epilepsy and drug resistance by regulating BCL11A expression in human brain tissues. Moreover, the interaction between rs2556375 and rs12477097 results in increased risk for drug resistance.
Published in 2022
READ PUBLICATION →

Drug repositioning for SARS-CoV-2 by Gaussian kernel similarity bilinear matrix factorization.

Authors: Wang Y, Xiang J, Liu C, Tang M, Hou R, Bao M, Tian G, He J, He B

Abstract: Coronavirus disease 2019 (COVID-19), a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently spreading rapidly around the world. Since SARS-CoV-2 seriously threatens human life and health as well as the development of the world economy, it is very urgent to identify effective drugs against this virus. However, traditional methods to develop new drugs are costly and time-consuming, which makes drug repositioning a promising exploration direction for this purpose. In this study, we collected known antiviral drugs to form five virus-drug association datasets, and then explored drug repositioning for SARS-CoV-2 by Gaussian kernel similarity bilinear matrix factorization (VDA-GKSBMF). By the 5-fold cross-validation, we found that VDA-GKSBMF has an area under curve (AUC) value of 0.8851, 0.8594, 0.8807, 0.8824, and 0.8804, respectively, on the five datasets, which are higher than those of other state-of-art algorithms in four datasets. Based on known virus-drug association data, we used VDA-GKSBMF to prioritize the top-k candidate antiviral drugs that are most likely to be effective against SARS-CoV-2. We confirmed that the top-10 drugs can be molecularly docked with virus spikes protein/human ACE2 by AutoDock on five datasets. Among them, four antiviral drugs ribavirin, remdesivir, oseltamivir, and zidovudine have been under clinical trials or supported in recent literatures. The results suggest that VDA-GKSBMF is an effective algorithm for identifying potential antiviral drugs against SARS-CoV-2.
Published in 2022
READ PUBLICATION →

Transcriptome expression profile of compound-K-enriched red ginseng extract (DDK-401) in Korean volunteers and its apoptotic properties.

Authors: Ahn JC, Mathiyalagan R, Nahar J, Ramadhania ZM, Kong BM, Lee DW, Choi SK, Lee CS, Boopathi V, Yang DU, Kim BY, Park H, Yang DC, Kang SC

Abstract: Ginseng and ginsenosides have been reported to have various pharmacological effects, but their efficacies depend on intestinal absorption. Compound K (CK) is gaining prominence for its biological and pharmaceutical properties. In this study, CK-enriched fermented red ginseng extract (DDK-401) was prepared by enzymatic reactions. To examine its pharmacokinetics, a randomized, single-dose, two-sequence, crossover study was performed with eleven healthy Korean male and female volunteers. The volunteers were assigned to take a single oral dose of one of two extracts, DDK-401 or common red ginseng extract (DDK-204), during the initial period. After a 7-day washout, they received the other extract. The pharmacokinetics of DDK-401 showed that its maximum plasma concentration (Cmax) occurred at 184.8 +/- 39.64 ng/mL, Tmax was at 2.4 h, and AUC(0-12h) was 920.3 +/- 194.70 ng h/mL, which were all better than those of DDK-204. The maximum CK absorption in the female volunteers was higher than that in the male volunteers. The differentially expressed genes from the male and female groups were subjected to a KEGG pathway analysis, which showed results in the cell death pathway, such as apoptosis and necroptosis. In cytotoxicity tests, DDK-401 and DDK-204 were not particularly toxic to normal (HaCaT) cells, but at a concentration of 250 mug/mL, DDK-401 had a much higher toxicity to human lung cancer (A549) cells than DDK-204. DDK-401 also showed a stronger antioxidant capacity than DDK-204 in both the DPPH and potassium ferricyanide reducing power assays. DDK-401 reduced the reactive oxygen species production in HaCaT cells with induced oxidative stress and led to apoptosis in the A549 cells. In the mRNA sequence analysis, a signaling pathway with selected marker genes was assessed by RT-PCR. In the HaCaT cells, DDK-401 and DDK-204 did not regulate FOXO3, TLR4, MMP-9, or p38 expression; however, in the A549 cells, DDK-401 downregulated the expressions of MMP9 and TLR4 as well as upregulated the expressions of the p38 and caspase-8 genes compared to DDK-204. These results suggest that DDK-401 could act as a molecular switch for these two cellular processes in response to cell damage signaling and that it could be a potential candidate for further evaluations in health promotion studies.
Published in December 2022
READ PUBLICATION →

Topiramate and other kainate receptor antagonists for depression: A systematic review of randomized controlled trials.

Authors: Shamabadi A

Abstract: BACKGROUND: Depression is a common disorder that affects patients' quality of life and incurs health system costs. Due to the resistance to treat depression, better understanding of neurophysiology was considered; one of the implications is the glutamatergic system. This study aims to systematically review clinical trials investigating the antidepressant effects of kainate receptor antagonists. METHODS: The study protocol was registered in PROSPERO (CRD42021213912). Scopus, ISI, Embase, PubMed, Cochrane Library, Google Scholar, and two trial registries were searched for randomized controlled trials on the effectiveness of topiramate, phenobarbital, and other ten barbiturates in depression. The difference with control groups in terms of changing depressive symptoms was the primary outcome. RESULTS: Nine trials were identified, in which 784 patients were studied. The efficacy of thiopental was comparable to that of imipramine, with fewer side effects. When administered with electroconvulsive therapy, it had fewer to similar effects and fewer side effects than ketamine. Both monotherapy and adjunctive therapy with topiramate were effective and tolerable in treating depressed patients. Phenobarbital had therapeutic effects compared to imipramine and amitriptyline with fewer side effects. CONCLUSION: Regarding the glutamatergic hypothesis of depression and obtained promising results, further studies of kainate receptor antagonists in high-quality trials are recommended. Given the high prevalence of depression in epileptic patients, more problems with its treatment, and the fact that the studied agents were anticonvulsants, it is recommended that future studies prioritize depressed-epileptic patients.
Published in 2022
READ PUBLICATION →

Recent advances in understanding adverse effects associated with drugs targeting the serotonin receptor, 5-HT GPCR.

Authors: Jamu IM, Okamoto H

Abstract: It has been acknowledged that more women suffer from adverse effects of drugs than men globally. A group of drugs targeting serotonin [5-hydroxytryptamine] (5-HT) binding G-protein-coupled receptors (GPCRs) have been reported to preferentially affect women more than men, causing adverse effects such as breast cancer and infertility. 5-HT GPCR-targeted drugs in the central nervous system (CNS) manage psychiatric conditions, such as depression or bipolar and in the peripheral nervous system (PNS) treat migraines. Physiological characteristics such as specific types of hormones, higher body fat density and smaller body mass in women result in disparities in pharmacodynamics of drugs, thus explaining sex-related differences in the observed adverse effects. In this review, we discuss the side effects of drugs targeting 5-HT GPCRs based on serotonin's roles in the CNS and PNS. We have systematically reviewed adverse effects of drugs targeting 5-HT GPCR using information from the Food and Drug Administration and European Medicines Agency. Further information on drug side effects and receptor targets was acquired from the SIDER and DrugBank databases, respectively. These drugs bind to 5-HT GPCRs in the CNS, namely the brain, and PNS such as breasts, ovaries and testes, potentially causing side effects within these areas. Oestrogen affects both the biosynthesis of 5-HT and the densities of 5-HT GPCRs in given tissues and cells. 5-HT GPCR-targeting drugs perturb this process. This is likely a reason why women are experiencing more adverse effects than men due to their periodic increase and the relatively high concentrations of oestrogen in women and, thus a greater incidence of the oestrogen-mediated 5-HT system interference. In addition, women have a lower concentration of serotonin relative to men and also have a relatively faster rate of serotonin metabolism which might be contributing to the former. We discuss potential approaches that could mitigate at least some of the adverse effects experienced by women taking the 5-HT GPCR-targeting drugs.
Published in 2022
READ PUBLICATION →

Novel antimicrobial agents targeting the Streptococcus mutans biofilms discovery through computer technology.

Authors: Zhang B, Zhao M, Tian J, Lei L, Huang R

Abstract: Dental caries is one of the most prevalent and costly biofilm-associated infectious diseases worldwide. Streptococcus mutans (S. mutans) is well recognized as the major causative factor of dental caries due to its acidogenicity, aciduricity and extracellular polymeric substances (EPSs) synthesis ability. The EPSs have been considered as a virulent factor of cariogenic biofilm, which enhance biofilms resistance to antimicrobial agents and virulence compared with planktonic bacterial cells. The traditional anti-caries therapies, such as chlorhexidine and antibiotics are characterized by side-effects and drug resistance. With the development of computer technology, several novel approaches are being used to synthesize or discover antimicrobial agents. In this mini review, we summarized the novel antimicrobial agents targeting the S. mutans biofilms discovery through computer technology. Drug repurposing of small molecules expands the original medical indications and lowers drug development costs and risks. The computer-aided drug design (CADD) has been used for identifying compounds with optimal interactions with the target via silico screening and computational methods. The synthetic antimicrobial peptides (AMPs) based on the rational design, computational design or high-throughput screening have shown increased selectivity for both single- and multi-species biofilms. These methods provide potential therapeutic agents to promote targeted control of the oral microbial biofilms in the near future.
Published in 2022
READ PUBLICATION →

Network-based approach for targeting human kinases commonly associated with amyotrophic lateral sclerosis and cancer.

Authors: Khatoon F, Haque S, Hashem A, Mahmoud A, Tashkandi H, Mathkor D, Harakeh S, Alghamdi B, Kumar V

Abstract: BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a rare progressive and chronic motor neuron degenerative disease for which at present no cure is available. In recent years, multiple genes encode kinases and other causative agents for ALS have been identified. Kinases are enzymes that show pleiotropic nature and regulate different signal transduction processes and pathways. The dysregulation of kinase activity results in dramatic changes in processes and causes many other human diseases including cancers. METHODS: In this study, we have adopted a network-based system biology approach to investigate the kinase-based molecular interplay between ALS and other human disorders. A list of 62 ALS-associated-kinases was first identified and then we identified the disease associated with them by scanning multiple disease-gene interaction databases to understand the link between the ALS-associated kinases and other disorders. RESULTS: An interaction network with 36 kinases and 381 different disorders associated with them was prepared, which represents the complexity and the comorbidity associated with the kinases. Further, we have identified 5 miRNAs targeting the majority of the kinases in the disease-causing network. The gene ontology and pathways enrichment analysis of those miRNAs were performed to understand their biological and molecular functions along with to identify the important pathways. We also identified 3 drug molecules that can perturb the disease-causing network by drug repurposing. CONCLUSION: This network-based study presented hereby contributes to a better knowledge of the molecular underpinning of comorbidities associated with the kinases associated with the ALS disease and provides the potential therapeutic targets to disrupt the highly complex disease-causing network.