Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2021
READ PUBLICATION →

A Preliminary Inquiry Into the Potential Mechanism of Huang-Lian-Jie-Du Decoction in Treating Rheumatoid Arthritis via Network Pharmacology and Molecular Docking.

Authors: Li C, Pan J, Xu C, Jin Z, Chen X

Abstract: Huang-Lian-Jie-Du decoction (HLJDD) has been widely applied to treat inflammation-associated diseases for thousands of years in China. However, the concrete molecular mechanism of HLJDD in the treatment of rheumatoid arthritis (RA) remains unclear. In this work, network pharmacology and molecular docking were applied to preliminarily analyze the potential active ingredients, drug targets, and related pathways of HLJDD on treating RA. A total of 102 active compounds with corresponding 189 targets were identified from HLJDD, and 41 common targets were further identified by intersecting with RA-related targets. Functional enrichment analysis was performed to screen the biological pathways associated with RA. Ten hub targets were further identified through constructing the protein-protein interaction (PPI) network of common targets, which were mainly enriched in the interleukin-17 (IL-17) signaling pathway, tumor necrosis factor (TNF) signaling pathway, and Toll-like receptor signaling pathway. Furthermore, a complex botanical drugs-ingredients-hub-targets-disease network was successfully constructed. The molecular docking results exhibited that these vital ingredients of HLJDD had a stable binding to the hub targets. Among these ingredients, quercetin (MOL000098) was the most common molecule with stable binding to all the targets, and PTGS2 was considered the most important target with multiple regulations by the most active ingredients. In vitro, we successfully validated the inhibitory role of quercetin in the cellular proliferation of human RA fibroblast-like synoviocyte cell line (MH7A cells). These findings indicated that the potential mechanisms of HLJDD for RA treatment might be attributed to inhibiting the immune-inflammatory response, reducing the release of chemokines, and alleviating the destruction of extracellular matrix (ECM) in the synovial compartment.
Published in 2021
READ PUBLICATION →

CYP2D6 Genetic Variation and Antipsychotic-Induced Weight Gain: A Systematic Review and Meta-Analysis.

Authors: Wannasuphoprasit Y, Andersen SE, Arranz MJ, Catalan R, Jurgens G, Kloosterboer SM, Rasmussen HB, Bhat A, Irizar H, Koller D, Polimanti R, Wang B, Zartaloudi E, Austin-Zimmerman I, Bramon E

Abstract: Background: Antipsychotic-induced weight gain is a contributing factor in the reduced life expectancy reported amongst people with psychotic disorders. CYP2D6 is a liver enzyme involved in the metabolism of many commonly used antipsychotic medications. We investigated if CYP2D6 genetic variation influenced weight or BMI among people taking antipsychotic treatment. Methods: We conducted a systematic review and a random effects meta-analysis of publications in Pubmed, Embase, PsychInfo, and CENTRAAL that had BMI and/or weight measurements of patients on long-term antipsychotics by their CYP2D6-defined metabolic groups (poor, intermediate, normal/extensive, and ultra-rapid metabolizers, UMs). Results: Twelve studies were included in the systematic review. All cohort studies suggested that the presence of reduced-function or non-functional alleles for CYP2D6 was associated with greater antipsychotic-induced weight gain, whereas most cross-sectional studies did not find any significant associations. Seventeen studies were included in the meta-analysis with clinical data of 2,041 patients, including 93 poor metabolizers (PMs), 633 intermediate metabolizers (IMs), 1,272 normal metabolizers (NMs), and 30 UMs. Overall, we did not find associations in any of the comparisons made. The estimated pooled standardized differences for the following comparisons were (i) PM versus NM; weight = -0.07 (95%CI: -0.49 to 0.35, p = 0.74), BMI = 0.40 (95%CI: -0.19 to 0.99, p = 0.19). (ii) IM versus NM; weight = 0.09 (95% CI: -0.04 to 0.22, p = 0.16) and BMI = 0.09 (95% CI: -0.24 to 0.41, p = 0.60). (iii) UM versus EM; weight = 0.01 (95% CI: -0.37 to 0.40, p = 0.94) and BMI = -0.08 (95%CI: -0.57 to 0.42, p = 0.77). Conclusion: Our systematic review of cohort studies suggested that CYP2D6 poor metabolizers have higher BMI than normal metabolizers, but the data of cross-sectional studies and the meta-analysis did not show this association. Although our review and meta-analysis constitutes one of the largest studies with comprehensively genotyped samples, the literature is still limited by small numbers of participants with genetic variants resulting in poor or UMs status. We need further studies with larger numbers of extreme metabolizers to establish its clinical utility in antipsychotic treatment. CYP2D6 is a key gene for personalized prescribing in mental health.
Published in 2021
READ PUBLICATION →

Genetic Epidemiology of Medication Safety and Efficacy Related Variants in the Central Han Chinese Population With Whole Genome Sequencing.

Authors: Tian J, Zhang J, Yang Z, Feng S, Li S, Ren S, Shi J, Hou X, Xue X, Yang B, Xu H, Guo J

Abstract: Medication safety and efficacy-related pharmacogenomic research play a critical role in precision medicine. This study comprehensively analyzed the pharmacogenomic profiles of the central Han Chinese population in the context of medication safety and efficacy and compared them with other global populations. The ultimate goal is to improve medical treatment guidelines. We performed whole-genome sequencing in 487 Han Chinese individuals and investigated the allele frequencies of pharmacogenetic variants in 1,731 drug response-related genes. We identified 2,139 (81.18%) previously reported variants in our population with annotations in the PharmGKB database. The allele frequencies of these 2,139 clinical-related variants were similar to those in other East Asian populations but different from those in other global populations. We predicted the functional effects of nonsynonymous variants in the 1,731 pharmacogenes and identified 1,281 novel and 4,442 previously reported deleterious variants. Of the 1,281 novel deleterious variants, five are common variants with an allele frequency >5%, and the rest are rare variants with an allele frequency <5%. Of the 4,442 known deleterious variants, the allele frequencies were found to differ from those in other populations, of which 146 are common variants. In addition, we found many variants in non-coding regions, the functions of which require further investigation. This study compiled a large amount of data on pharmacogenomic variants in the central Han Chinese population. At the same time, it provides insight into the role of pharmacogenomic variants in clinical medication safety and efficacy.
Published in December 2021
READ PUBLICATION →

Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer's disease.

Authors: Fang J, Zhang P, Zhou Y, Chiang CW, Tan J, Hou Y, Stauffer S, Li L, Pieper AA, Cummings J, Cheng F

Abstract: We developed an endophenotype disease module-based methodology for Alzheimer's disease (AD) drug repurposing and identified sildenafil as a potential disease risk modifier. Based on retrospective case-control pharmacoepidemiologic analyses of insurance claims data for 7.23 million individuals, we found that sildenafil usage was significantly associated with a 69% reduced risk of AD (hazard ratio = 0.31, 95% confidence interval 0.25-0.39, P<1.0x10(-8)). Propensity score stratified analyses confirmed that sildenafil is significantly associated with a decreased risk of AD across all four drug cohorts we tested (diltiazem, glimepiride, losartan and metformin) after adjusting age, sex, race, and disease comorbidities. We also found that sildenafil increases neurite growth and decreases phospho-tau expression in AD patient-induced pluripotent stem cells-derived neuron models, supporting mechanistically its potential beneficial effect in Alzheimer's disease. The association between sildenafil use and decreased incidence of AD does not establish causality or its direction, which requires a randomized clinical trial approach.
Published in 2021
READ PUBLICATION →

Methods for Molecular Modelling of Protein Complexes.

Authors: Kanitkar TR, Sen N, Nair S, Soni N, Amritkar K, Ramtirtha Y, Madhusudhan MS

Abstract: Biological processes are often mediated by complexes formed between proteins and various biomolecules. The 3D structures of such protein-biomolecule complexes provide insights into the molecular mechanism of their action. The structure of these complexes can be predicted by various computational methods. Choosing an appropriate method for modelling depends on the category of biomolecule that a protein interacts with and the availability of structural information about the protein and its interacting partner. We intend for the contents of this chapter to serve as a guide as to what software would be the most appropriate for the type of data at hand and the kind of 3D complex structure required. Particularly, we have dealt with protein-small molecule ligand, protein-peptide, protein-protein, and protein-nucleic acid interactions.Most, if not all, model building protocols perform some sampling and scoring. Typically, several alternate conformations and configurations of the interactors are sampled. Each such sample is then scored for optimization. To boost the confidence in these predicted models, their assessment using other independent scoring schemes besides the inbuilt/default ones would prove to be helpful. This chapter also lists such software and serves as a guide to gauge the fidelity of modelled structures of biomolecular complexes.
Published in 2021
READ PUBLICATION →

The Underlying Molecular Mechanisms Involved in Traditional Chinese Medicine Smilax china L. for the Treatment of Pelvic Inflammatory Disease.

Authors: Zhang Y, Zhao Z, Chen H, Fu Y, Wang W, Li Q, Li X, Wang X, Fan G, Zhang Y

Abstract: Smilax china L. (SCL) is extensively used in the treatment of pelvic inflammatory disease (PID). This study aimed to clarify the potential active ingredients of SCL and mechanisms on PID. SCL was widely distributed in Japan, South Korea, and China, which was traditionally considered heat-clearing, detoxicating, and dampness-eliminating medicine. Systems pharmacology revealed that 32 compounds in SCL may interact with 19 targets for immunoenhancement, antiapoptosis, anti-inflammation, and antioxidant activity of the PID model. Molecular docking revealed that isorhamnetin, moracin M, rutin, and oxyresveratrol may have higher binding potential with prostaglandin-endoperoxide synthase 2 (PTGS2), mitogen-activated protein kinase 1 (MAPK1), siderocalin (LCN2), tumor necrosis factor (TNF), and matrix metalloprotein-9 (MMP9), respectively. Molecular dynamics simulation showed that the binding modes of moracin M-MAPK1, rutin-TNF, and oxyresveratrol-MMP9 complexes were more stable, evidenced by relatively smaller fluctuations in root mean square deviation values. Conclusively, SCL may treat PID by inhibiting inflammatory factors, antitissue fibrosis, and microbial growth.
Published in 2021
READ PUBLICATION →

Antiseizure Medication use in Gastric Bypass Patients and Other Post-Surgical Malabsorptive States.

Authors: Brown CS, Rabinstein AA, Nystrom EM, Britton JW, Singh TD

Abstract: Healthcare professionals are encountering an increasing number of patients who have undergone bariatric surgeries. Antiseizure medications (ASM) have a narrow therapeutic window, and patients with malabsorptive states receiving ASM present a complex situation as the pharmacokinetics of these drugs have only been studied in patients with a normal functioning gastrointestinal tract. Patients with malabsorptive states may have altered pharmacokinetics, and there is limited literature to guide drug selection and dosage adjustment in patients with malabsorptive states. This review highlights pharmacokinetic parameters of common ASM, and considerations when managing patients on them. The effect of pH, lipophilicity, absorption, and metabolism should be taken into account when selecting and managing ASMs in this patient population. Based on these parameters, levetiracetam, and topiramate have fewer issues referable to absorption related to bariatric surgery while oral formulations of phenytoin, carbamazepine, oxcarbamazepine and valproic acid have reduced absorption due to effects of bariatric surgery based on the pharmacokinetic properties of these medications. Extended formulations should be avoided and ASM serum concentrations should be checked before and after surgery. The care of patients with epilepsy who are scheduled to undergo bariatric surgery should be guided by a multidisciplinary team including a pharmacist and a neurologist who should be involved in the adjustment of the ASMs throughout the pre-surgical and post-surgical periods.
Published in 2021
READ PUBLICATION →

Network Pharmacology-Based Systematic Analysis of Molecular Mechanisms of Dingji Fumai Decoction for Ventricular Arrhythmia.

Authors: Liang Y, Liang B, Wu XR, Chen W, Zhao LZ

Abstract: Background: Dingji Fumai Decoction (DFD), a traditional herbal mixture, has been widely used to ventricular arrhythmia (VA) in clinical practice in China. However, research on the bioactive components and underlying mechanisms of DFD in VA is still scarce. Methods: Components of DFD were collected from TCMSP, ETCM, and literature. The chemical structures of each component were obtained from PubChem. Next, SwissADME and SwissTargetPrediction were applied for compounds screening and targets prediction of DFD; meanwhile, targets of VA were collected from DrugBank and Online Mendelian Inheritance in Man (OMIM). Then, the H-C-T-D network and the protein-protein interaction (PPI) network were constructed based on the data obtained above. CytoNCA was utilized to filter hub genes and VarElect was used to analyze the relationship between genes and diseases. At last, Metascape was employed for systematic analysis on the potential targets of herbals against VA, and AutoDock was applied for molecular docking to verify the results. Results: A total of 434 components were collected, 168 of which were qualified, and there were 28 shared targets between DFD and VA. Three function modules of DFD were found from the PPI network. Further systematic analysis of shared genes and function modules explained the potential mechanism of DFD in the treatment of VA; molecular docking has verified the interactions. Conclusions: DFD could be employed for VA through mechanisms, including complex interactions between related components and targets, as predicted by network pharmacology and molecular docking. This work confirmed that DFD could apply to the treatment of VA and promoted the explanation of DFD for VA in the molecular mechanisms.
Published in 2021
READ PUBLICATION →

Integrated Strategy of Network Pharmacological Prediction and Experimental Validation Elucidate Possible Mechanism of Bu-Yang Herbs in Treating Postmenopausal Osteoporosis via ESR1.

Authors: Xia H, Liu J, Yang W, Liu M, Luo Y, Yang Z, Xie J, Zeng H, Xu R, Ling H, Zeng Q, Xu H, Fang L, Wang H, Tong P, Jin H, Yang F

Abstract: Postmenopausal osteoporosis (PMOP) is a type of bone metabolism disease-related to estrogen deficiency with an increasing incidence. Traditional Chinese (TCM) has always been used and showed effectiveness in treating PMOP. In the current study, Bu-Yang herbs were considered to be the most frequently used and efficient TCM herbs in PMOP treatment. However, chemical and pharmacological profiles were not elucidated. Network pharmacology was conducted on representative Bu-Yang herbs (Yin-Yang-Huo. Du-Zhong, Bu-Gu-Zhi, Tu-Si-Zi) to investigate the mechanism of Bu-Yang herbs on PMOP. Chemical compounds, potential targets, and disease related genes were available from the corresponding database. Results showed that Bu-Yang herbs could interact with ESR1 and estrogen signaling pathways. For further validation, the Bu-Yang decoction (BYD), formula consisted of the above-mentioned 4 Bu-Yang herbs was presented for experimental validation. In vivo, BYD significantly reversed ovariectomy (OVX)-induced osteoporosis progress in a dose-dependent manner by up-regulation of bone mineral density and amelioration of bone microarchitecture. In vitro, BYD dramatically improved the proliferation and mineral nodules formation of osteoblasts. Both in vitro and in vivo results illustrated that the phenotype change induced by BYD is correlated with up-regulated of ESR1 and activation of the beta-catenin pathway. Meanwhile, inhibition of ESR1 by ICI182, 780 blocked the osteogenic phenotype and beta-catenin pathway activation induced by BYD. In conclusion, the current study suggested that Bu-Yang herbs are the most useful TCM herbs in treating PMOP. Furthermore, the integrated strategy of network pharmacology prediction with experimental validation suggested that BYD exerted its anti-PMOP via ESR1 and the downstream mechanism might be activation of the beta-catenin signaling pathway.
Published in 2021
READ PUBLICATION →

Integrated Pharmacological Analysis on the Mechanism of Fuyou Formula in Treating Precocious Puberty.

Authors: Guo C, Sun N, Hu K, Bai G, Zhang M, Wang Q, Ding Q, Liu J, Wang X, Zhao L

Abstract: Fu-you formula (FY), a Traditional Chinese Medicine (TCM) formula composed of 12 herbs, as an in-hospital preparation, has been used treat to precocious puberty (PP) for decades. However, the lack of phytochemical characterization and mechanism of FY remains the main limitation for its spreading. In this study, we analyze the components and mechanisms of FY in PP, based on the integrated pharmacology. Investigated main constituents, targets, pathways of FY by using an integrative pharmacology, and recognized main constituents by HPLC-MS/MS. Then, observed the levels of Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estrogen (E2) in danazol-induced PP in Sprague-Dawley (SD) rats. Lastly, retrospective study analyzed the clinical data of 575 patients who were diagnosed PP, treated by the FY, and followed-up in our hospital from 2014-2020. The result that total of 116 important candidate targets were selected based on pharmacological analysis. Selected the top 10 values key targets such as the estrogen receptor alpha (ESR1) and insulin-like growth factor 1 (IGF1), were localized and the related gene functions were determined. Gene functions were associated with biological regulation, a cellular process, or signaling pathway, such as the Estrogen signaling pathway, MAPK signaling pathway and PI3K-Akt signaling pathway. By recognizing the five compounds related to the ESR1 and IGF1, which are Quercetin, kaempferol, Luteolin, Apigenin, and Emodin. The results of the molecular docking study further showed that the flavonoids had a strong binding affinity for ESR1 and IGF1 after docking into the crystal structure. The results showed that the FY could effectively reduce E2, LH, and FSH levels in SD rats. Furthermore, the results of the retrospective analysis of medical records showed that the FY could remarkably reduce E2 levels in girls with PP.