Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on December 16, 2009
READ PUBLICATION →

Human synthetic lethal inference as potential anti-cancer target gene detection.

Authors: Conde-Pueyo N, Munteanu A, Sole RV, Rodriguez-Caso C

Abstract: BACKGROUND: Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. RESULTS: In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes) in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases) as well as on existent approved drugs (DrugBank database) supports our selection of cancer-therapy candidates. CONCLUSIONS: Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.
Published on December 3, 2009
READ PUBLICATION →

Alternative paths in HIV-1 targeted human signal transduction pathways.

Authors: Balakrishnan S, Tastan O, Carbonell J, Klein-Seetharaman J

Abstract: BACKGROUND: Human immunodeficiency virus-1 (HIV-1) has a minimal genome of only 9 genes, which encode 15 proteins. HIV-1 thus depends on the human host for virtually every aspect of its life cycle. The universal language of communication in biological systems, including between pathogen and host, is via signal transduction pathways. The fundamental units of these pathways are protein protein interactions. Understanding the functional significance of HIV-1, human interactions requires viewing them in the context of human signal transduction pathways. RESULTS: Integration of HIV-1, human interactions with known signal transduction pathways indicates that the majority of known human pathways have the potential to be effected through at least one interaction with an HIV-1 protein at some point during the HIV-1 life cycle. For each pathway, we define simple paths between start points (i.e. no edges going into a node) and end points (i.e. no edges leaving a node). We then identify the paths that pass through human proteins that interact with HIV-1 proteins. We supplement the combined map with functional information, including which proteins are known drug targets and which proteins contribute significantly to HIV-1 function as revealed by recent siRNA screens. We find that there are often alternative paths starting and ending at the same proteins but circumventing the intermediate steps disrupted by HIV-1. CONCLUSION: A mapping of HIV-1, human interactions to human signal transduction pathways is presented here to link interactions with functions. We proposed a new way of analyzing the virus host interactions by identifying HIV-1 targets as well as alternative paths bypassing the HIV-1 targeted steps. This approach yields numerous experimentally testable hypotheses on how HIV-1 function may be compromised and human cellular function restored by pharmacological approaches. We are making the full set of pathway analysis results available to the community.
Published in November 2009
READ PUBLICATION →

Molecular properties and CYP2D6 substrates: central nervous system therapeutics case study and pattern analysis of a substrate database.

Authors: Chico LK, Behanna HA, Hu W, Zhong G, Roy SM, Watterson DM

Abstract: CYP2D6 substrate status is a critical Go/No Go decision criteria in central nervous system (CNS) drug discovery efforts because the polymorphic nature of CYP2D6 can lead to variable patient safety and drug efficacy. In addition, CYP2D6 is disproportionately involved in the metabolism of CNS drugs compared with other drug classes. Therefore, identifying trends in small molecule properties of CNS-penetrant compounds that can help discriminate potential CYP2D6 substrates from nonsubstrates would allow additional prioritization in the synthesis and biological evaluation of new therapeutic candidates. We report here the conversion of the CNS drug minaprine from substrate to nonsubstrate, as well as the conversion of the related CNS drug minozac from nonsubstrate to substrate, through the use of analog synthesis and CYP2D6 enzyme kinetic analyses. No single molecular property strongly correlated with substrate status for this 3-amino-4-methyl-6-phenylpyridazine scaffold, although molecular volume and charge appeared to be indirectly related. A parsed database of CYP2D6 substrates across diverse chemical structures was assembled and analyzed for physical property trends correlating with substrate status. We found that a complex interplay of properties influenced CYP2D6 substrate status and that the particular chemical scaffold affects which properties are most prominent. The results also identified an unexpected issue in CNS drug discovery, in that some property trends correlative with CYP2D6 substrates overlap previously reported properties that correlate with CNS penetrance. These results suggest the need for a careful balance in the design and synthesis of new CNS therapeutic candidates to avoid CYP2D6 substrate status while maintaining CNS penetrance.
Published in November 2009
READ PUBLICATION →

An integrative approach to reveal driver gene fusions from paired-end sequencing data in cancer.

Authors: Wang XS, Prensner JR, Chen G, Cao Q, Han B, Dhanasekaran SM, Ponnala R, Cao X, Varambally S, Thomas DG, Giordano TJ, Beer DG, Palanisamy N, Sartor MA, Omenn GS, Chinnaiyan AM

Abstract: Cancer genomes contain many aberrant gene fusions-a few that drive disease and many more that are nonspecific passengers. We developed an algorithm (the concept signature or 'ConSig' score) that nominates biologically important fusions from high-throughput data by assessing their association with 'molecular concepts' characteristic of cancer genes, including molecular interactions, pathways and functional annotations. Copy number data supported candidate fusions and suggested a breakpoint principle for intragenic copy number aberrations in fusion partners. By analyzing lung cancer transcriptome sequencing and genomic data, we identified a novel R3HDM2-NFE2 fusion in the H1792 cell line. Lung tissue microarrays revealed 2 of 76 lung cancer patients with genomic rearrangement at the NFE2 locus, suggesting recurrence. Knockdown of NFE2 decreased proliferation and invasion of H1792 cells. Together, these results present a systematic analysis of gene fusions in cancer and describe key characteristics that assist in new fusion discovery.
Published in November 2009
READ PUBLICATION →

The protein meta-structure: a novel concept for chemical and molecular biology.

Authors: Konrat R

Abstract: The ultimate goal of bioinformatics or computational chemical biology is the sequence-based prediction of protein functionality. However, due to the degeneracy of the primary sequence code there is no unambiguous relationship. The degeneracy can be partly lifted by going to higher levels of abstraction and, for example, incorporating 3D structural information. However, sometimes even at this conceptual level functional ambiguities often remain. Here a novel conceptual framework is described (the protein meta-structure). At this level of abstraction, the protein structure is viewed as an intricate network of interacting residues. This novel conception offers unique possibilities for chemical (molecular) biology, structural genomics and drug discovery. In this review some prototypical applications will be presented that serve to illustrate the potential of the methodology.
Published on November 28, 2009
READ PUBLICATION →

Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi.

Authors: Holman AG, Davis PJ, Foster JM, Carlow CK, Kumar S

Abstract: BACKGROUND: Wolbachia (wBm) is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium. RESULTS: wBm protein sequences were aligned using BLAST to the Database of Essential Genes (DEG) version 5.2, a collection of 5,260 experimentally identified essential genes in 15 bacterial strains. A confidence score, the Multiple Hit Score (MHS), was developed to predict each wBm gene's essentiality based on the top alignments to essential genes in each bacterial strain. This method was validated using a jackknife methodology to test the ability to recover known essential genes in a control genome. A second estimation of essentiality, the Gene Conservation Score (GCS), was calculated on the basis of phyletic conservation of genes across Wolbachia's parent order Rickettsiales. Clusters of orthologous genes were predicted within the 27 currently available complete genomes. Druggability of wBm proteins was predicted by alignment to a database of protein targets of known compounds. CONCLUSION: Ranking wBm genes by either MHS or GCS predicts and prioritizes potentially essential genes. Comparison of the MHS to GCS produces quadrants representing four types of predictions: those with high confidence of essentiality by both methods (245 genes), those highly conserved across Rickettsiales (299 genes), those similar to distant essential genes (8 genes), and those with low confidence of essentiality (253 genes). These data facilitate selection of wBm genes for entry into drug design pipelines.
Published in October 2009
READ PUBLICATION →

Target fishing for chemical compounds using target-ligand activity data and ranking based methods.

Authors: Wale N, Karypis G

Abstract: In recent years, the development of computational techniques that identify all the likely targets for a given chemical compound, also termed as the problem of Target Fishing, has been an active area of research. Identification of likely targets of a chemical compound in the early stages of drug discovery helps to understand issues such as selectivity, off-target pharmacology, and toxicity. In this paper, we present a set of techniques whose goal is to rank or prioritize targets in the context of a given chemical compound so that most targets against which this compound may show activity appear higher in the ranked list. These methods are based on our extensions to the SVM and ranking perceptron algorithms for this problem. Our extensive experimental study shows that the methods developed in this work outperform previous approaches 2% to 60% under different evaluation criterions.
Published in October 2009
READ PUBLICATION →

Structure of protein interaction networks and their implications on drug design.

Authors: Hase T, Tanaka H, Suzuki Y, Nakagawa S, Kitano H

Abstract: Protein-protein interaction networks (PINs) are rich sources of information that enable the network properties of biological systems to be understood. A study of the topological and statistical properties of budding yeast and human PINs revealed that they are scale-rich and configured as highly optimized tolerance (HOT) networks that are similar to the router-level topology of the Internet. This is different from claims that such networks are scale-free and configured through simple preferential-attachment processes. Further analysis revealed that there are extensive interconnections among middle-degree nodes that form the backbone of the networks. Degree distributions of essential genes, synthetic lethal genes, synthetic sick genes, and human drug-target genes indicate that there are advantageous drug targets among nodes with middle- to low-degree nodes. Such network properties provide the rationale for combinatorial drugs that target less prominent nodes to increase synergetic efficacy and create fewer side effects.
Published on October 1, 2009
READ PUBLICATION →

Network analyses in systems pharmacology.

Authors: Berger SI, Iyengar R

Abstract: Systems pharmacology is an emerging area of pharmacology which utilizes network analysis of drug action as one of its approaches. By considering drug actions and side effects in the context of the regulatory networks within which the drug targets and disease gene products function, network analysis promises to greatly increase our knowledge of the mechanisms underlying the multiple actions of drugs. Systems pharmacology can provide new approaches for drug discovery for complex diseases. The integrated approach used in systems pharmacology can allow for drug action to be considered in the context of the whole genome. Network-based studies are becoming an increasingly important tool in understanding the relationships between drug action and disease susceptibility genes. This review discusses how analysis of biological networks has contributed to the genesis of systems pharmacology and how these studies have improved global understanding of drug targets, suggested new targets and approaches for therapeutics, and provided a deeper understanding of the effects of drugs. Taken together, these types of analyses can lead to new therapeutic options while improving the safety and efficacy of existing medications.
Published in September - October 2009
READ PUBLICATION →

Structure Activity Relationships (SARs) Using a Structurally Diverse Drug Database: Validating Success of Predictor Tools.

Authors: D'Souza MJ, Koyoshi F, Everett LM

Abstract: ADME/Tox (absorption, distribution, metabolism, elimination and toxicity) technology is traditionally associated as a tool in the drug discovery process which is often used to predict the efficiency of drug adsorption, distribution, metabolic pathways, and elimination. For the past four years we have been involved in an effort to evaluate readily available Food and Drug Administration (FDA) consumer drug profiles and pharmacological data. Portable Document Format (PDF) data from drug profiles available on the FDA Drug Information website were used to create a searchable FDA Consumer Drug Database((c)) using Bio-Rad's KnowItAll((R)) platform which includes ADME/Tox in silico predictors. 14 pertinent pharmaceutical and pharmacological properties were collected for 75 structurally diverse consumer prescription drugs, and for several drugs, not all properties were completely populated. The major objective of this investigation was to validate the platforms prediction models for plasma protein binding (PPB) and bioavailability (BIO).