Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on June 14, 2021
READ PUBLICATION →

Atomistic De-novo Inhibitor Generation-Guided Drug Repurposing for SARS-CoV-2 Spike Protein with Free-Energy Validation by Well-Tempered Metadynamics.

Authors: Chowdhury R, Sai Sreyas Adury V, Vijay A, Singh RK, Mukherjee A

Abstract: Computational drug design is increasingly becoming important with new and unforeseen diseases like COVID-19. In this study, we present a new computational de novo drug design and repurposing method and applied it to find plausible drug candidates for the receptor binding domain (RBD) of SARS-CoV-2 (COVID-19). Our study comprises three steps: atom-by-atom generation of new molecules around a receptor, structural similarity mapping to existing approved and investigational drugs, and validation of their binding strengths to the viral spike proteins based on rigorous all-atom, explicit-water well-tempered metadynamics free energy calculations. By choosing the receptor binding domain of the viral spike protein, we showed that some of our new molecules and some of the repurposable drugs have stronger binding to RBD than hACE2. To validate our approach, we also calculated the free energy of hACE2 and RBD, and found it to be in an excellent agreement with experiments. These pool of drugs will allow strategic repurposing against COVID-19 for a particular prevailing conditions.
Published on June 12, 2021
READ PUBLICATION →

Advancement in predicting interactions between drugs used to treat psoriasis and its comorbidities by integrating molecular and clinical resources.

Authors: Patrick MT, Bardhi R, Raja K, He K, Tsoi LC

Abstract: OBJECTIVE: Drug-drug interactions (DDIs) can result in adverse and potentially life-threatening health consequences; however, it is challenging to predict potential DDIs in advance. We introduce a new computational approach to comprehensively assess the drug pairs which may be involved in specific DDI types by combining information from large-scale gene expression (984 transcriptomic datasets), molecular structure (2159 drugs), and medical claims (150 million patients). MATERIALS AND METHODS: Features were integrated using ensemble machine learning techniques, and we evaluated the DDIs predicted with a large hospital-based medical records dataset. Our pipeline integrates information from >30 different resources, including >10 000 drugs and >1.7 million drug-gene pairs. We applied our technique to predict interactions between 37 611 drug pairs used to treat psoriasis and its comorbidities. RESULTS: Our approach achieves >0.9 area under the receiver operator curve (AUROC) for differentiating 11 861 known DDIs from 25 750 non-DDI drug pairs. Significantly, we demonstrate that the novel DDIs we predict can be confirmed through independent data sources and supported using clinical medical records. CONCLUSIONS: By applying machine learning and taking advantage of molecular, genomic, and health record data, we are able to accurately predict potential new DDIs that can have an impact on public health.
Published on June 12, 2021
READ PUBLICATION →

Hydrogen Sulfide Metabolism and Pulmonary Hypertension.

Authors: Roubenne L, Marthan R, Le Grand B, Guibert C

Abstract: Pulmonary hypertension (PH) is a severe and multifactorial disease characterized by a progressive elevation of pulmonary arterial resistance and pressure due to remodeling, inflammation, oxidative stress, and vasoreactive alterations of pulmonary arteries (PAs). Currently, the etiology of these pathological features is not clearly understood and, therefore, no curative treatment is available. Since the 1990s, hydrogen sulfide (H2S) has been described as the third gasotransmitter with plethoric regulatory functions in cardiovascular tissues, especially in pulmonary circulation. Alteration in H2S biogenesis has been associated with the hallmarks of PH. H2S is also involved in pulmonary vascular cell homeostasis via the regulation of hypoxia response and mitochondrial bioenergetics, which are critical phenomena affected during the development of PH. In addition, H2S modulates ATP-sensitive K(+) channel (KATP) activity, and is associated with PA relaxation. In vitro or in vivo H2S supplementation exerts antioxidative and anti-inflammatory properties, and reduces PA remodeling. Altogether, current findings suggest that H2S promotes protective effects against PH, and could be a relevant target for a new therapeutic strategy, using attractive H2S-releasing molecules. Thus, the present review discusses the involvement and dysregulation of H2S metabolism in pulmonary circulation pathophysiology.
Published on June 11, 2021
READ PUBLICATION →

Identification of potential diagnostic biomarkers in MMPs for pancreatic carcinoma.

Authors: Xie J, Zhou X, Wang R, Zhao J, Tang J, Zhang Q, Du Y, Pang Y

Abstract: ABSTRACT: Pancreatic cancer (PC) is a malignant tumor which ranks fourth in cancer-related death. However, the specificity and sensitivity of traditional biomarkers such as carbohydrate antigen 19-9 no longer meet the clinical requirements.Tools as ONCOMINE and Gene Expression Profiling Interactive Analysis (GEPIA) were used to analyze the differential expression of matrix metalloproteinases (MMPs) in PC and adjacent tissues. For further analysis, we adopted database for annotation, visualization and integrated discovery (DAVID 6.8), transcriptional regulatory relationships unraveled by sentence-based text (TRRUST) and other tools. We also identified drugs targeted the selected MMPs.Eight MMPs (MMP1, MMP2, MMP7, MMP9, MMP11, MMP12, MMP14, and MMP28) were differentially expressed in PC and adjacent tissue. MMP1 (P = .0189), MMP7 (P = .000216), MMP11 (P = .0209), MMP14 (P = .00611) were correlated with the pathological stages of PC. Patients with higher expression of MMP1 (P = .0011), MMP2 (P = .011), MMP7 (P = .0081), MMP9 (P = .046), MMP11 (P = .0019), MMP12 (P = .0011), MMP14 (P = .0011), and MMP28 (P = 6.3e-06) showed poor prognosis. Ten transcription factors were associated with the up-regulation of selected MMPs. Marimastat (DB00786) was found to target selected MMPs.Our research revealed that selected MMPs played an important role in the early diagnosis and prognosis of PC.
Published on June 11, 2021
READ PUBLICATION →

DeepR2cov: deep representation learning on heterogeneous drug networks to discover anti-inflammatory agents for COVID-19.

Authors: Wang X, Xin B, Tan W, Xu Z, Li K, Li F, Zhong W, Peng S

Abstract: Recent studies have demonstrated that the excessive inflammatory response is an important factor of death in coronavirus disease 2019 (COVID-19) patients. In this study, we propose a deep representation on heterogeneous drug networks, termed DeepR2cov, to discover potential agents for treating the excessive inflammatory response in COVID-19 patients. This work explores the multi-hub characteristic of a heterogeneous drug network integrating eight unique networks. Inspired by the multi-hub characteristic, we design 3 billion special meta paths to train a deep representation model for learning low-dimensional vectors that integrate long-range structure dependency and complex semantic relation among network nodes. Based on the representation vectors and transcriptomics data, we predict 22 drugs that bind to tumor necrosis factor-alpha or interleukin-6, whose therapeutic associations with the inflammation storm in COVID-19 patients, and molecular binding model are further validated via data from PubMed publications, ongoing clinical trials and a docking program. In addition, the results on five biomedical applications suggest that DeepR2cov significantly outperforms five existing representation approaches. In summary, DeepR2cov is a powerful network representation approach and holds the potential to accelerate treatment of the inflammatory responses in COVID-19 patients. The source code and data can be downloaded from https://github.com/pengsl-lab/DeepR2cov.git.
Published on June 11, 2021
READ PUBLICATION →

Interactions between cardiology and oncology drugs in precision cardio-oncology.

Authors: Kamaraju S, Mohan M, Zaharova S, Wallace B, McGraw J, Lokken J, Tierney J, Weil E, Fatunde O, Brown SA

Abstract: Recent advances in treatment have transformed the management of cancer. Despite these advances, cardiovascular disease remains a leading cause of death in cancer survivors. Cardio-oncology has recently evolved as a subspecialty to prevent, diagnose, and manage cardiovascular side effects of antineoplastic therapy. An emphasis on optimal management of comorbidities and close attention to drug interactions are important in cardio-oncologic care. With interdisciplinary collaboration among oncologists, cardiologists, and pharmacists, there is potential to prevent and reduce drug-related toxicities of treatments. The cytochrome P450 (CYP450) family of enzymes and the P-glycoprotein (P-g) transporter play a crucial role in drug metabolism and drug resistance. Here we discuss the role of CYP450 and P-g in drug interactions in the field of cardio-oncology, provide an overview of the cardiotoxicity of a spectrum of cancer agents, highlight the role of precision medicine, and encourage a multidisciplinary treatment approach for patients with cancer.
Published on June 11, 2021
READ PUBLICATION →

Drug target gene-based analyses of drug repositionability in rare and intractable diseases.

Authors: Sakate R, Kimura T

Abstract: Drug development for rare and intractable diseases has been challenging for decades due to the low prevalence and insufficient information on these diseases. Drug repositioning is increasingly being used as a promising option in drug development. We aimed to analyze the trend of drug repositioning and inter-disease drug repositionability among rare and intractable diseases. We created a list of rare and intractable diseases based on the designated diseases in Japan. Drug information extracted from clinical trial data were integrated with information of drug target genes, which represent the mechanism of drug action. We obtained 753 drugs and 551 drug target genes from 8307 clinical trials for 189 diseases or disease groups. Trend analysis of drug sharing between a disease pair revealed that 1676 drug repositioning events occurred in 4401 disease pairs. A score, Rgene, was invented to investigate the proportion of drug target genes shared between a disease pair. Annual changes of Rgene corresponded to the trend of drug repositioning and predicted drug repositioning events occurring within a year or two. Drug target gene-based analyses well visualized the drug repositioning landscape. This approach facilitates drug development for rare and intractable diseases.
Published on June 11, 2021
READ PUBLICATION →

Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes.

Authors: Luo Q, Mo S, Xue Y, Zhang X, Gu Y, Wu L, Zhang J, Sun L, Liu M, Hu Y

Abstract: BACKGROUND: Drug-drug interaction (DDI) is a serious public health issue. The L1000 database of the LINCS project has collected millions of genome-wide expressions induced by 20,000 small molecular compounds on 72 cell lines. Whether this unified and comprehensive transcriptome data resource can be used to build a better DDI prediction model is still unclear. Therefore, we developed and validated a novel deep learning model for predicting DDI using 89,970 known DDIs extracted from the DrugBank database (version 5.1.4). RESULTS: The proposed model consists of a graph convolutional autoencoder network (GCAN) for embedding drug-induced transcriptome data from the L1000 database of the LINCS project; and a long short-term memory (LSTM) for DDI prediction. Comparative evaluation of various machine learning methods demonstrated the superior performance of our proposed model for DDI prediction. Many of our predicted DDIs were revealed in the latest DrugBank database (version 5.1.7). In the case study, we predicted drugs interacting with sulfonylureas to cause hypoglycemia and drugs interacting with metformin to cause lactic acidosis, and showed both to induce effects on the proteins involved in the metabolic mechanism in vivo. CONCLUSIONS: The proposed deep learning model can accelerate the discovery of new DDIs. It can support future clinical research for safer and more effective drug co-prescription.
Published on June 10, 2021
READ PUBLICATION →

Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19.

Authors: Le BL, Andreoletti G, Oskotsky T, Vallejo-Gracia A, Rosales R, Yu K, Kosti I, Leon KE, Bunis DG, Li C, Kumar GR, White KM, Garcia-Sastre A, Ott M, Sirota M

Abstract: The novel SARS-CoV-2 virus emerged in December 2019 and has few effective treatments. We applied a computational drug repositioning pipeline to SARS-CoV-2 differential gene expression signatures derived from publicly available data. We utilized three independent published studies to acquire or generate lists of differentially expressed genes between control and SARS-CoV-2-infected samples. Using a rank-based pattern matching strategy based on the Kolmogorov-Smirnov Statistic, the signatures were queried against drug profiles from Connectivity Map (CMap). We validated 16 of our top predicted hits in live SARS-CoV-2 antiviral assays in either Calu-3 or 293T-ACE2 cells. Validation experiments in human cell lines showed that 11 of the 16 compounds tested to date (including clofazimine, haloperidol and others) had measurable antiviral activity against SARS-CoV-2. These initial results are encouraging as we continue to work towards a further analysis of these predicted drugs as potential therapeutics for the treatment of COVID-19.
Published on June 9, 2021
READ PUBLICATION →

Investigating the active compounds and mechanism of HuaShi XuanFei formula for prevention and treatment of COVID-19 based on network pharmacology and molecular docking analysis.

Authors: Wang J, Ge W, Peng X, Yuan L, He S, Fu X

Abstract: Traditional Chinese medicine (TCM) has exerted positive effects in controlling the COVID-19 pandemic. HuaShi XuanFei Formula (HSXFF) was developed to treat patients with mild and general COVID-19 in Zhejiang Province, China. The present study seeks to explore its potentially active compounds and pharmacological mechanisms against COVID-19 based on network pharmacology, molecular docking, and molecular dynamics (MD) simulation. All components of HSXFF were harvested from the pharmacology database of the TCMSP system. COVID-19-related targets were retrieved from using OMIM and GeneCards databases. The herb-compound-targets network was constructed by Cytoscape. The target protein-protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to discover the potential key target genes and mechanism. The main active compounds of HSXFF were docked with 3C-like (3CL) protease hydrolase and angiotensin-converting enzyme 2 (ACE2). The MD simulation confirmed the binding stability of docking results. The herbs-targets network mainly contained 52 compounds and 70 corresponding targets, including key targets such as RELA, TNF, TP53, IL6, MAPK1, CXCL8, IL-1beta, and MAPK14. The GO and KEGG indicated that HSXFF may be mainly acting on the IL-17 signaling pathway, TNF signaling pathway, NF-kappaB signaling pathway, etc. The molecular docking results indicated that isovitexin and procyanidin B1 showed the highest affinity with 3CL and ACE2, respectively, which were confirmed by MD simulation. These findings suggested HSXFF exerted therapeutic effects involving "multi-compounds and multi-targets." It might be working through directly inhibiting the virus, improving immune function, and reducing the inflammatory in response to anti-COVID-19. In summary, the present study would provide a valuable direction for further research of HSXFF.