Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on April 20, 2020
READ PUBLICATION →

FDA-Approved Drugs Efavirenz, Tipranavir, and Dasabuvir Inhibit Replication of Multiple Flaviviruses in Vero Cells.

Authors: Stefanik M, Valdes JJ, Ezebuo FC, Haviernik J, Uzochukwu IC, Fojtikova M, Salat J, Eyer L, Ruzek D

Abstract: Vector-borne flaviviruses (VBFs) affect human health worldwide, but no approved drugs are available specifically to treat VBF-associated infections. Here, we performed in silico screening of a library of U.S. Food and Drug Administration-approved antiviral drugs for their interaction with Zika virus proteins. Twelve hit drugs were identified by the docking experiments and tested in cell-based antiviral assay systems. Efavirenz, tipranavir, and dasabuvir at micromolar concentrations were identified to inhibit all VBFs tested; i.e., two representatives of mosquito-borne flaviviruses (Zika and West Nile viruses) and one representative of flaviviruses transmitted by ticks (tick-borne encephalitis virus). The results warrant further research into these drugs, either individually or in combination, as possible pan-flavivirus inhibitors.
Published on April 20, 2020
READ PUBLICATION →

Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model.

Authors: Ji BY, You ZH, Cheng L, Zhou JR, Alghazzawi D, Li LP

Abstract: In recent years, accumulating evidences have shown that microRNA (miRNA) plays an important role in the exploration and treatment of diseases, so detection of the associations between miRNA and disease has been drawn more and more attentions. However, traditional experimental methods have the limitations of high cost and time- consuming, a computational method can help us more systematically and effectively predict the potential miRNA-disease associations. In this work, we proposed a novel network embedding-based heterogeneous information integration method to predict miRNA-disease associations. More specifically, a heterogeneous information network is constructed by combining the known associations among lncRNA, drug, protein, disease, and miRNA. After that, the network embedding method Learning Graph Representations with Global Structural Information (GraRep) is employed to learn embeddings of nodes in heterogeneous information network. In this way, the embedding representations of miRNA and disease are integrated with the attribute information of miRNA and disease (e.g. miRNA sequence information and disease semantic similarity) to represent miRNA-disease association pairs. Finally, the Random Forest (RF) classifier is used for predicting potential miRNA-disease associations. Under the 5-fold cross validation, our method obtained 85.11% prediction accuracy with 80.41% sensitivity at the AUC of 91.25%. In addition, in case studies of three major Human diseases, 45 (Colon Neoplasms), 42 (Breast Neoplasms) and 44 (Esophageal Neoplasms) of top-50 predicted miRNAs are respectively verified by other miRNA-disease association databases. In conclusion, the experimental results suggest that our method can be a powerful and useful tool for predicting potential miRNA-disease associations.
Published on April 20, 2020
READ PUBLICATION →

Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2'-O-ribose methyltransferase.

Authors: Khan RJ, Jha RK, Amera GM, Jain M, Singh E, Pathak A, Singh RP, Muthukumaran J, Singh AK

Abstract: The recent pandemic associated with SARS-CoV-2, a virus of the Coronaviridae family, has resulted in an unprecedented number of infected people. The highly contagious nature of this virus makes it imperative for us to identify promising inhibitors from pre-existing antiviral drugs. Two druggable targets, namely 3C-like proteinase (3CLpro) and 2'-O-ribose methyltransferase (2'-O-MTase) were selected in this study due to their indispensable nature in the viral life cycle. 3CLpro is a cysteine protease responsible for the proteolysis of replicase polyproteins resulting in the formation of various functional proteins, whereas 2'-O-MTase methylates the ribose 2'-O position of the first and second nucleotide of viral mRNA, which sequesters it from the host immune system. The selected drug target proteins were screened against an in-house library of 123 antiviral drugs. Two promising drug molecules were identified for each protein based on their estimated free energy of binding (DeltaG), the orientation of drug molecules in the active site and the interacting residues. The selected protein-drug complexes were then subjected to MD simulation, which consists of various structural parameters to equivalently reflect their physiological state. From the virtual screening results, two drug molecules were selected for each drug target protein [Paritaprevir (DeltaG = -9.8 kcal/mol) & Raltegravir (DeltaG = -7.8 kcal/mol) for 3CLpro and Dolutegravir (DeltaG = -9.4 kcal/mol) and Bictegravir (DeltaG = -8.4 kcal/mol) for 2'-OMTase]. After the extensive computational analysis, we proposed that Raltegravir, Paritaprevir, Bictegravir and Dolutegravir are excellent lead candidates for these crucial proteins and they could become potential therapeutic drugs against SARS-CoV-2. Communicated by Ramaswamy H. Sarma.
Published on April 20, 2020
READ PUBLICATION →

Identifying GPCR-drug interaction based on wordbook learning from sequences.

Authors: Wang P, Huang X, Qiu W, Xiao X

Abstract: BACKGROUND: G protein-coupled receptors (GPCRs) mediate a variety of important physiological functions, are closely related to many diseases, and constitute the most important target family of modern drugs. Therefore, the research of GPCR analysis and GPCR ligand screening is the hotspot of new drug development. Accurately identifying the GPCR-drug interaction is one of the key steps for designing GPCR-targeted drugs. However, it is prohibitively expensive to experimentally ascertain the interaction of GPCR-drug pairs on a large scale. Therefore, it is of great significance to predict the interaction of GPCR-drug pairs directly from the molecular sequences. With the accumulation of known GPCR-drug interaction data, it is feasible to develop sequence-based machine learning models for query GPCR-drug pairs. RESULTS: In this paper, a new sequence-based method is proposed to identify GPCR-drug interactions. For GPCRs, we use a novel bag-of-words (BoW) model to extract sequence features, which can extract more pattern information from low-order to high-order and limit the feature space dimension. For drug molecules, we use discrete Fourier transform (DFT) to extract higher-order pattern information from the original molecular fingerprints. The feature vectors of two kinds of molecules are concatenated and input into a simple prediction engine distance-weighted K-nearest-neighbor (DWKNN). This basic method is easy to be enhanced through ensemble learning. Through testing on recently constructed GPCR-drug interaction datasets, it is found that the proposed methods are better than the existing sequence-based machine learning methods in generalization ability, even an unconventional method in which the prediction performance was further improved by post-processing procedure (PPP). CONCLUSIONS: The proposed methods are effective for GPCR-drug interaction prediction, and may also be potential methods for other target-drug interaction prediction, or protein-protein interaction prediction. In addition, the new proposed feature extraction method for GPCR sequences is the modified version of the traditional BoW model and may be useful to solve problems of protein classification or attribute prediction. The source code of the proposed methods is freely available for academic research at https://github.com/wp3751/GPCR-Drug-Interaction.
Published on April 19, 2020
READ PUBLICATION →

Mechanisms of Action of Autophagy Modulators Dissected by Quantitative Systems Pharmacology Analysis.

Authors: Shi Q, Pei F, Silverman GA, Pak SC, Perlmutter DH, Liu B, Bahar I

Abstract: Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as alpha1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-kappaB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities.
Published on April 17, 2020
READ PUBLICATION →

Anticrystal Engineering of Ketoprofen and Ester Local Anesthetics: Ionic Liquids or Deep Eutectic Mixtures?

Authors: Umerska A, Bialek K, Zotova J, Skotnicki M, Tajber L

Abstract: Ionic liquids (ILs) and deep eutectic mixtures (DEMs) are potential solutions to the problems of low solubility, polymorphism, and low bioavailability of drugs. The aim of this work was to develop and investigate ketoprofen (KET)-based ILs/DEMs containing an ester local anesthetic (LA): benzocaine (BEN), procaine (PRO) and tetracaine (TET) as the second component. ILs/DEMs were prepared via a mechanosynthetic process that involved the mixing of KET with an LA in a range of molar ratios and applying a thermal treatment. After heating above the melting point and quench cooling, the formation of supercooled liquids with Tgs that were dependent on the composition was observed for all KET-LA mixtures with exception of that containing 95 mol% of BEN. The KET-LA mixtures containing either >/= 60 mol% BEN or 95 mol% of TET showed crystallization to BEN and TET, respectively, during either cooling or second heating. KET decreased the crystallization tendency of BEN and TET and increased their glass-forming ability. The KET-PRO systems showed good glass-forming ability and did not crystallize either during the cooling or during the second heating cycle irrespective of the composition. Infrared spectroscopy and molecular modeling indicated that KET and LAs formed DEMs, but in the KET-PRO systems small quantities of carboxylate anions were present.
Published on April 15, 2020
READ PUBLICATION →

Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19.

Authors: Gysi DM, Valle ID, Zitnik M, Ameli A, Gan X, Varol O, Ghiassian SD, Patten JJ, Davey R, Loscalzo J, Barabasi AL

Abstract: The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.
Published on April 15, 2020
READ PUBLICATION →

Genomewide DNA methylation regulation analysis of long noncoding RNAs in glioblastoma.

Authors: Ji J, Zhao L, Zhao X, Li Q, An Y, Li L, Li D

Abstract: Glioblastoma (GBM) is a malignant brain tumor associated with high mortality. Long noncoding RNAs (lncRNAs) are increasingly being recognized as its modulators. However, it remains mostly unexplored how lncRNAs are mediated by DNA methylation in GBM. The present study integrated multiomics data to analyze the epigenetic dysregulation of lncRNAs in GBM. Widely aberrant methylation in the lncRNA promoters was observed, and the lncRNA promoters exhibited a more hypomethylated pattern in GBM. By combining transcriptional datasets, it was possible identify the lncRNAs whose transcriptional changes might be associated with the aberrant promoter methylation. Then, a methylationmediated lncRNA regulatory network and functional enrichment analysis of aberrantly methylated lncRNAs showed that lncRNAs with different methylation patterns were involved in diverse GBM progressionrelated biological functions and pathways. Specifically, four lncRNAs whose increased expression may be regulated by the corresponding promoter hypomethylation were evaluated to have an excellent diagnostic effect and clinical prognostic value. Finally, through the construction of drugtarget association networks, the present study identified potential therapeutic targets and smallmolecule drugs for GBM treatment. The present study provides novel insights for understanding the regulation of lncRNAs by DNA methylation and developing cancer biomarkers in GBM.
Published on April 15, 2020
READ PUBLICATION →

Investigation of cardiovascular protective effect of Shenmai injection by network pharmacology and pharmacological evaluation.

Authors: Li L, Yang D, Li J, Niu L, Chen Y, Zhao X, Oduro PK, Wei C, Xu Z, Wang Q, Li Y

Abstract: BACKGROUND: Shenmai injection (SMI) has been used in the treatment of cardiovascular disease (CVD), such as heart failure, myocardial ischemia and coronary heart disease. It has been found to have efficacy on doxorubicin (DOX)-induced cardiomyopathy. The aims of this study were to explore the underlying molecular mechanisms of SMI treatment on CVD by using network pharmacology and its protective effect on DOX-induced cardiotoxicity by in vitro and in vivo experiment based on network pharmacology prediction. METHODS: Network pharmacology method was used to reveal the relationship between ingredient-target-disease and function-pathway of SMI on the treatment of CVD. Chemical ingredients of SMI were collected form TCMSP, BATMAN-TCM and HIT Database. Drugbank, DisGeNET and OMIM Database were used to obtain potential targets for CVD. Networks were visualized utilizing Cytoscape software, and the enrichment analysis was performed using IPA system. Finally, cardioprotective effects and predictive mechanism confirmation of SMI were investigated in H9c2 rat cardiomyocytes and DOX-injured C57BL/6 mice. RESULTS: An ingredient-target-disease & function-pathway network demonstrated that 28 ingredients derived from SMI modulated 132 common targets shared by SMI and CVD. The analysis of diseases & functions, top pathways and upstream regulators indicated that the cardioprotective effects of SMI might be associated with 28 potential ingredients, which regulated the 132 targets in cardiovascular disease through regulation of G protein-coupled receptor signaling. In DOX-injured H9c2 cardiomyocytes, SMI increased cardiomyocytes viability, prevented cell apoptosis and increased PI3K and p-Akt expression. This protective effect was markedly weakened by PI3K inhibitor LY294002. In DOX-treated mice, SMI treatment improved cardiac function, including enhancement of ejection fraction and fractional shortening. CONCLUSIONS: Collectively, the protective effects of SMI on DOX-induced cardiotoxicity are possibly related to the activation of the PI3K/Akt pathway, as the downstream of G protein-coupled receptor signaling pathway.
Published on April 14, 2020
READ PUBLICATION →

Genomics functional analysis and drug screening of SARS-CoV-2.

Authors: Chen L, Zhong L

Abstract: A novel coronavirus appeared in Wuhan, China has led to major outbreaks. Recently, rapid classification of virus species, analysis of genome and screening for effective drugs are the most important tasks. In the present study, through literature review, sequence alignment, ORF identification, motif recognition, secondary and tertiary structure prediction, the whole genome of SARS-CoV-2 were comprehensively analyzed. To find effective drugs, the parameters of binding sites were calculated by SeeSAR. In addition, potential miRNAs were predicted according to RNA base-pairing. After prediction by using NCBI, WebMGA and GeneMark and comparison, a total of 8 credible ORFs were detected. Even the whole genome have great difference with other CoVs, each ORF has high homology with SARS-CoVs (>90%). Furthermore, domain composition in each ORFs was also similar to SARS. In the DrugBank database, only 7 potential drugs were screened based on the sequence search module. Further predicted binding sites between drug and ORFs revealed that 2-(N-Morpholino)-ethanesulfonic acid could bind 1# ORF in 4 different regions ideally. Meanwhile, both benzyl (2-oxopropyl) carbamate and 4-(dimehylamina) benzoic acid have bene demonstrated to inhibit SARS-CoV infection effectively. Interestingly, 2 miRNAs (miR-1307-3p and miR-3613-5p) were predicted to prevent virus replication via targeting 3'-UTR of the genome or as biomarkers. In conclusion, the novel coronavirus may have consanguinity with SARS. Drugs used to treat SARS may also be effective against the novel virus. In addition, altering miRNA expression may become a potential therapeutic schedule.