Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on November 16, 2019
READ PUBLICATION →

Pyrido[2,3-d]pyrimidin-7(8H)-ones: Synthesis and Biomedical Applications.

Authors: Jubete G, Puig de la Bellacasa R, Estrada-Tejedor R, Teixido J, Borrell JI

Abstract: Pyrido[2,3-d]pyrimidines (1) are a type of privileged heterocyclic scaffolds capable of providing ligands for several receptors in the body. Among such structures, our group and others have been particularly interested in pyrido[2,3-d]pyrimidine-7(8H)-ones (2) due to the similitude with nitrogen bases present in DNA and RNA. Currently there are more than 20,000 structures 2 described which correspond to around 2900 references (half of them being patents). Furthermore, the number of references containing compounds of general structure 2 have increased almost exponentially in the last 10 years. The present review covers the synthetic methods used for the synthesis of pyrido[2,3-d]pyrimidine-7(8H)-ones (2), both starting from a preformed pyrimidine ring or a pyridine ring, and the biomedical applications of such compounds.
Published on November 15, 2019
READ PUBLICATION →

Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work.

Authors: Kumar R, Harilal S, Gupta SV, Jose J, Thomas Parambi DG, Uddin MS, Shah MA, Mathew B

Abstract: Drug discovery and development are long and financially taxing processes. On an average it takes 12-15 years and costs 1.2 billion USD for successful drug discovery and approval for clinical use. Many lead molecules are not developed further and their potential is not tapped to the fullest due to lack of resources or time constraints. In order for a drug to be approved by FDA for clinical use, it must have excellent therapeutic potential in the desired area of target with minimal toxicities as supported by both pre-clinical and clinical studies. The targeted clinical evaluations fail to explore other potential therapeutic applications of the candidate drug. Drug repurposing or repositioning is a fast and relatively cheap alternative to the lengthy and expensive de novo drug discovery and development. Drug repositioning utilizes the already available clinical trials data for toxicity and adverse effects, at the same time explores the drug's therapeutic potential for a different disease. This review addresses recent developments and future scope of drug repositioning strategy.
Published on November 14, 2019
READ PUBLICATION →

Ligands and Receptors with Broad Binding Capabilities Have Common Structural Characteristics: An Antibiotic Design Perspective.

Authors: Abrusan G, Marsh JA

Abstract: The spread of antibiotic resistance is one of the most serious global public-health problems. Here we show that a particular class of homomers with binding sites spanning multiple protein chains is particularly suitable for targeting by broad-spectrum antibacterial agents because due to the slow evolutionary change of such binding pockets, ligands of such homomers are much more likely to bind their homologs than ligands of monomers, or homomers with a single-chain binding site. Additionally, using de novo ligand design and deep learning, we show that the chemical compounds that can bind several different receptors have common structural characteristics and that halogens and fragments similar to the building blocks existing antimicrobials are overrepresented in them. Finally, we show that binding multiple receptors selects for flexible compounds, which are less likely to accumulate in Gram-negative bacteria; thus there is trade-off between reducing the emergence of resistance by multitargeting and broad-spectrum antibacterial activity.
Published on November 14, 2019
READ PUBLICATION →

The assessment of efficient representation of drug features using deep learning for drug repositioning.

Authors: Moridi M, Ghadirinia M, Sharifi-Zarchi A, Zare-Mirakabad F

Abstract: BACKGROUND: De novo drug discovery is a time-consuming and expensive process. Nowadays, drug repositioning is utilized as a common strategy to discover a new drug indication for existing drugs. This strategy is mostly used in cases with a limited number of candidate pairs of drugs and diseases. In other words, they are not scalable to a large number of drugs and diseases. Most of the in-silico methods mainly focus on linear approaches while non-linear models are still scarce for new indication predictions. Therefore, applying non-linear computational approaches can offer an opportunity to predict possible drug repositioning candidates. RESULTS: In this study, we present a non-linear method for drug repositioning. We extract four drug features and two disease features to find the semantic relations between drugs and diseases. We utilize deep learning to extract an efficient representation for each feature. These representations reduce the dimension and heterogeneity of biological data. Then, we assess the performance of different combinations of drug features to introduce a pipeline for drug repositioning. In the available database, there are different numbers of known drug-disease associations corresponding to each combination of drug features. Our assessment shows that as the numbers of drug features increase, the numbers of available drugs decrease. Thus, the proposed method with large numbers of drug features is as accurate as small numbers. CONCLUSION: Our pipeline predicts new indications for existing drugs systematically, in a more cost-effective way and shorter timeline. We assess the pipeline to discover the potential drug-disease associations based on cross-validation experiments and some clinical trial studies.
Published on November 13, 2019
READ PUBLICATION →

Mapping the perturbome network of cellular perturbations.

Authors: Caldera M, Muller F, Kaltenbrunner I, Licciardello MP, Lardeau CH, Kubicek S, Menche J

Abstract: Drug combinations provide effective treatments for diverse diseases, but also represent a major cause of adverse reactions. Currently there is no systematic understanding of how the complex cellular perturbations induced by different drugs influence each other. Here, we introduce a mathematical framework for classifying any interaction between perturbations with high-dimensional effects into 12 interaction types. We apply our framework to a large-scale imaging screen of cell morphology changes induced by diverse drugs and their combination, resulting in a perturbome network of 242 drugs and 1832 interactions. Our analysis of the chemical and biological features of the drugs reveals distinct molecular fingerprints for each interaction type. We find a direct link between drug similarities on the cell morphology level and the distance of their respective protein targets within the cellular interactome of molecular interactions. The interactome distance is also predictive for different types of drug interactions.
Published on November 12, 2019
READ PUBLICATION →

A Direct Compression Matrix Made from Xanthan Gum and Low Molecular Weight Chitosan Designed to Improve Compressibility in Controlled Release Tablets.

Authors: Abu Fara D, Dadou SM, Rashid I, Al-Obeidi R, Antonijevic MD, Chowdhry BZ, Badwan A

Abstract: The subject of our research is the optimization of direct compression (DC), controlled release drug matrices comprising chitosan/xanthan gum. The foregoing is considered from two main perspectives; the use of low molecular weight chitosan (LCS) with xanthan gum (XG) and the determination of important attributes for direct compression of the mixtures of the two polymers. Powder flow, deformation behaviour, and work of compression parameters were used to characterize powder and tableting properties. Compression pressure and LCS content within the matrix were investigated for their influence on the crushing strength of the tablets produced. Response surface methodology (RSM) was applied to determine the optimum parameters required for DC of the matrices investigated. Results confirm the positive contribution of LCS in enhancing powder compressibility and crushing strength of the resultant compacts. Compactibility of the XG/LCS mixtures was found to be more sensitive to applied compression pressure than LCS content. LCS can be added at concentrations as low as 15% w/w to achieve hard compacts, as indicated by the RSM results. The introduction of the plasticity factor, using LCS, to the fragmenting material XG was the main reason for the high volume reduction and reduced porosity of the polymer mixture. Combinations of XG with other commonly utilized polymers in controlled release studies such as glucosamine, hydroxypropyl methylcellulose (HPMC), Na alginate (ALG), guar gum, lactose and high molecular weight (HMW) chitosan were also used; all the foregoing polymers failed to reduce the matrix porosity beyond a certain compression pressure. Application of the LCS/XG mixture, at its optimum composition, for the controlled release of two model drugs (metoprolol succinate and dyphylline) was examined. The XG/LCS matrix at 15% w/w LCS content was found to control the release of metoprolol succinate and dyphylline. The former preparation confirmed the strong influence of compression pressure on changing the drug release profile. The latter preparation showed the ability of XG/LCS to extend the drug release at a fixed rate for 12 h of dissolution time after which the release became slightly slower.
Published on November 12, 2019
READ PUBLICATION →

Effects of Eucalypt Plant Monoterpenes on Koala (Phascolarctos Cinereus) Cytokine Expression In Vitro.

Authors: Marschner C, Krockenberger MB, Higgins DP

Abstract: Protective immunity is crucial for survival of any species, though the koala as a specialist feeder adapted to an exclusive diet of eucalypts that contain plant secondary metabolites of varying toxicity and of immunomodulatory property. Being constantly exposed to such dietary chemicals it raises the question of their immune effects in a specialist eucalypt feeder. This study demonstrates that natural levels of circulating eucalypt plant secondary metabolites have dose dependent in vitro effects on cytokine expression of koala peripheral blood mononuclear cells, suggesting a potential trade-off of reduced function in multiple arms of the immune system associated with koala's use of its specialized dietary niche.
Published on November 8, 2019
READ PUBLICATION →

Ruxolitinib binding to human serum albumin: bioinformatics, biochemical and functional characterization in JAK2V617F(+) cell models.

Authors: De Marinis E, Ceccherelli A, Quattrocchi A, Leboffe L, Polticelli F, Nervi C, Ascenzi P

Abstract: Ruxolitinib is a type I JAK inhibitor approved by FDA for targeted therapy of Philadelphia-negative myeloproliferative neoplasms (MPNs), all characterized by mutations activating the JAK2/STAT signaling pathway. Treatment with ruxolitinib improves constitutional symptoms and splenomegaly. However, patients can become resistant to treatment and chronic therapy has only a mild effect on molecular/pathologic remissions. Drugs interaction with plasma proteins, i.e. human serum albumin (HSA), is an important factor affecting the intensity and duration of their pharmacological actions. Here, the ruxolitinib recognition by the fatty acid binding sites (FAs) 1, 6, 7, and 9 of HSA has been investigated from the bioinformatics, biochemical and/or biological viewpoints. Docking simulations indicate that ruxolitinib binds to multiple sites of HSA. Ruxolitinib binds to the FA1 and FA7 sites of HSA with high affinity (Kr = 3.1 muM and 4.6 muM, respectively, at pH 7.3 and 37.0 degrees C). Moreover, HSA selectively blocks, in a dose dependent manner, the cytotoxic activity of ruxolitinib in JAK2V617F(+) cellular models for MPN, in vitro. Furthermore this event is accompanied by changes in the cell cycle, p27(Kip1) and cyclin D3 levels, and JAK/STAT signaling. Given the high plasma concentration of HSA, ruxolitinib trapping may be relevant in vivo.
Published on November 8, 2019
READ PUBLICATION →

Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects.

Authors: Zolotareva O, Saik OV, Konigs C, Bragina EY, Goncharova IA, Freidin MB, Dosenko VE, Ivanisenko VA, Hofestadt R

Abstract: Asthma and hypertension are complex diseases coinciding more frequently than expected by chance. Unraveling the mechanisms of comorbidity of asthma and hypertension is necessary for choosing the most appropriate treatment plan for patients with this comorbidity. Since both diseases have a strong genetic component in this article we aimed to find and study genes simultaneously associated with asthma and hypertension. We identified 330 shared genes and found that they form six modules on the interaction network. A strong overlap between genes associated with asthma and hypertension was found on the level of eQTL regulated genes and between targets of drugs relevant for asthma and hypertension. This suggests that the phenomenon of comorbidity of asthma and hypertension may be explained by altered genetic regulation or result from drug side effects. In this work we also demonstrate that not only drug indications but also contraindications provide an important source of molecular evidence helpful to uncover disease mechanisms. These findings give a clue to the possible mechanisms of comorbidity and highlight the direction for future research.
Published on November 7, 2019
READ PUBLICATION →

A Cell-Free Approach Based on Phospholipid Characterization for Determination of the Cell Specific Unbound Drug Fraction (fu,cell).

Authors: Treyer A, Walday S, Boriss H, Matsson P, Artursson P

Abstract: PURPOSE: The intracellular fraction of unbound compound (fu,cell) is an important parameter for accurate prediction of drug binding to intracellular targets. fu,cell is the result of a passive distribution process of drug molecules partitioning into cellular structures. Initial observations in our laboratory showed an up to 10-fold difference in the fu,cell of a given drug for different cell types. We hypothesized that these differences could be explained by the phospholipid (PL) composition of the cells, since the PL cell membrane is the major sink of unspecific drug binding. Therefore, we determined the fu,cell of 19 drugs in cell types of different origin. METHOD: The cells were characterized for their total PL content and we used mass spectrometric PL profiling to delineate the impact of each of the four major cellular PL subspecies: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). The cell-based experiments were compared to cell-free experiments that used beads covered by PL bilayers consisting of the most abundant PL subspecies. RESULTS: PC was found to give the largest contribution to the drug binding. Improved correlations between the cell-based and cell-free assays were obtained when affinities to all four major PL subspecies were considered. Together, our data indicate that fu,cell is influenced by PL composition of cells. CONCLUSION: We conclude that cellular PL composition varies between cell types and that cell-specific mixtures of PLs can replace cellular assays for determination of fu,cell as a rapid, small-scale assay covering a broad dynamic range. Graphical Abstract.