Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2016
READ PUBLICATION →

Novel aromatase inhibitors selection using induced fit docking and extra precision methods: Potential clinical use in ER-alpha-positive breast cancer.

Authors: Kumavath R, Azad M, Devarapalli P, Tiwari S, Kar S, Barh D, Azevedo V, Kumar AP

Abstract: Aromatase (CYP19A1) the key enzyme of estrogen biosynthesis, is often deregulated in breast cancer patients. It catalyzes the conversion of androgen to estrogen, thus responsible for production of estrogen in human body. However, it causes over-production of estrogen which eventually leads to proliferation of breast cancer cells. Identification of new small molecule inhibitors targeted against CYP19A1 therefore, facilitates to increase drug sensitivity of cancer cells. In this scenario, the present study aims to identify new molecules which could block or suppress the activity of aromatase enzyme by molecular docking studies using Schrodinger-Maestro v9.3. In this study we used in silico approach by modeling CYP19A1 protein the strcture was subjected to protein preparation wizard; to add hydrogen and optimize the protonation states of Thr310 and Ser478 and Asp309 residues. Active site of the CYP19A1 protein was identified using SiteMap tool of Scchrodinger package. We further carried out docking studies by means of Glid, with various ligands. Based on glid score, potential ligands were screeened and their interaction with CYP19A1 was identified. The best hits were further screened for Lipinski's rule for drug-likeliness and bioactivity scoring properties. Thus, we report two rubivivaxin and rhodethrin compounds that have successfully satisfied all in silico parameters, necessitating further in vitro and in vivo studies.
Published in 2016
READ PUBLICATION →

Network Analysis of Metabolite GWAS Hits: Implication of CPS1 and the Urea Cycle in Weight Maintenance.

Authors: Matone A, Scott-Boyer MP, Carayol J, Fazelzadeh P, Lefebvre G, Valsesia A, Charon C, Vervoort J, Astrup A, Saris WH, Morine M, Hager J

Abstract: BACKGROUND AND SCOPE: Weight loss success is dependent on the ability to refrain from regaining the lost weight in time. This feature was shown to be largely variable among individuals, and these differences, with their underlying molecular processes, are diverse and not completely elucidated. Altered plasma metabolites concentration could partly explain weight loss maintenance mechanisms. In the present work, a systems biology approach has been applied to investigate the potential mechanisms involved in weight loss maintenance within the Diogenes weight-loss intervention study. METHODS AND RESULTS: A genome wide association study identified SNPs associated with plasma glycine levels within the CPS1 (Carbamoyl-Phosphate Synthase 1) gene (rs10206976, p-value = 4.709e-11 and rs12613336, p-value = 1.368e-08). Furthermore, gene expression in the adipose tissue showed that CPS1 expression levels were associated with successful weight maintenance and with several SNPs within CPS1 (cis-eQTL). In order to contextualize these results, a gene-metabolite interaction network of CPS1 and glycine has been built and analyzed, showing functional enrichment in genes involved in lipid metabolism and one carbon pool by folate pathways. CONCLUSIONS: CPS1 is the rate-limiting enzyme for the urea cycle, catalyzing carbamoyl phosphate from ammonia and bicarbonate in the mitochondria. Glycine and CPS1 are connected through the one-carbon pool by the folate pathway and the urea cycle. Furthermore, glycine could be linked to metabolic health and insulin sensitivity through the betaine osmolyte. These considerations, and the results from the present study, highlight a possible role of CPS1 and related pathways in weight loss maintenance, suggesting that it might be partly genetically determined in humans.
Published in December 2016
READ PUBLICATION →

In silico prediction of chemical mechanism of action via an improved network-based inference method.

Authors: Wu Z, Lu W, Wu D, Luo A, Bian H, Li J, Li W, Liu G, Huang J, Cheng F, Tang Y

Abstract: BACKGROUND AND PURPOSE: Deciphering chemical mechanism of action (MoA) enables the development of novel therapeutics (e.g. drug repositioning) and evaluation of drug side effects. Development of novel computational methods for chemical MoA assessment under a systems pharmacology framework would accelerate drug discovery and development with greater efficiency and low cost. EXPERIMENTAL APPROACH: In this study, we proposed an improved network-based inference method, balanced substructure-drug-target network-based inference (bSDTNBI), to predict MoA for old drugs, clinically failed drugs and new chemical entities. Specifically, three parameters were introduced into network-based resource diffusion processes to adjust the initial resource allocation of different node types, the weighted values of different edge types and the influence of hub nodes. The performance of the method was systematically validated by benchmark datasets and bioassays. KEY RESULTS: High performance was yielded for bSDTNBI in both 10-fold and leave-one-out cross validations. A global drug-target network was built to explore MoA of anticancer drugs and repurpose old drugs for 15 cancer types/subtypes. In a case study, 27 predicted candidates among 56 commercially available compounds were experimentally validated to have binding affinities on oestrogen receptor alpha with IC50 or EC50 values =10 muM. Furthermore, two dual ligands with both agonistic and antagonistic activities =1 muM would provide potential lead compounds for the development of novel targeted therapy in breast cancer or osteoporosis. CONCLUSION AND IMPLICATIONS: In summary, bSDTNBI would provide a powerful tool for the MoA assessment on both old drugs and novel compounds in drug discovery and development.
Published in December 2016
READ PUBLICATION →

Big Data Mining and Adverse Event Pattern Analysis in Clinical Drug Trials.

Authors: Federer C, Yoo M, Tan AC

Abstract: Drug adverse events (AEs) are a major health threat to patients seeking medical treatment and a significant barrier in drug discovery and development. AEs are now required to be submitted during clinical trials and can be extracted from ClinicalTrials.gov ( https://clinicaltrials.gov/ ), a database of clinical studies around the world. By extracting drug and AE information from ClinicalTrials.gov and structuring it into a database, drug-AEs could be established for future drug development and repositioning. To our knowledge, current AE databases contain mainly U.S. Food and Drug Administration (FDA)-approved drugs. However, our database contains both FDA-approved and experimental compounds extracted from ClinicalTrials.gov . Our database contains 8,161 clinical trials of 3,102,675 patients and 713,103 reported AEs. We extracted the information from ClinicalTrials.gov using a set of python scripts, and then used regular expressions and a drug dictionary to process and structure relevant information into a relational database. We performed data mining and pattern analysis of drug-AEs in our database. Our database can serve as a tool to assist researchers to discover drug-AE relationships for developing, repositioning, and repurposing drugs.
Published in 2016
READ PUBLICATION →

Literature information in PubChem: associations between PubChem records and scientific articles.

Authors: Kim S, Thiessen PA, Cheng T, Yu B, Shoemaker BA, Wang J, Bolton EE, Wang Y, Bryant SH

Abstract: BACKGROUND: PubChem is an open archive consisting of a set of three primary public databases (BioAssay, Compound, and Substance). It contains information on a broad range of chemical entities, including small molecules, lipids, carbohydrates, and (chemically modified) amino acid and nucleic acid sequences (including siRNA and miRNA). Currently (as of Nov. 2015), PubChem contains more than 150 million depositor-provided chemical substance descriptions, 60 million unique chemical structures, and 225 million biological activity test results provided from over 1 million biological assay records. DESCRIPTION: Many PubChem records (substances, compounds, and assays) include depositor-provided cross-references to scientific articles in PubMed. Some PubChem contributors provide bioactivity data extracted from scientific articles. Literature-derived bioactivity data complement high-throughput screening (HTS) data from the concluded NIH Molecular Libraries Program and other HTS projects. Some journals provide PubChem with information on chemicals that appear in their newly published articles, enabling concurrent publication of scientific articles in journals and associated data in public databases. In addition, PubChem links records to PubMed articles indexed with the Medical Subject Heading (MeSH) controlled vocabulary thesaurus. CONCLUSION: Literature information, both provided by depositors and derived from MeSH annotations, can be accessed using PubChem's web interfaces, enabling users to explore information available in literature related to PubChem records beyond typical web search results. GRAPHICAL ABSTRACT: Graphical abstractLiterature information for PubChem records is derived from various sources.
Published in 2016
READ PUBLICATION →

Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections.

Authors: Lipner EM, Garcia BJ, Strong M

Abstract: Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.
Published in 2016
READ PUBLICATION →

IDAAPM: integrated database of ADMET and adverse effects of predictive modeling based on FDA approved drug data.

Authors: Legehar A, Xhaard H, Ghemtio L

Abstract: BACKGROUND: The disposition of a pharmaceutical compound within an organism, i.e. its Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET) properties and adverse effects, critically affects late stage failure of drug candidates and has led to the withdrawal of approved drugs. Computational methods are effective approaches to reduce the number of safety issues by analyzing possible links between chemical structures and ADMET or adverse effects, but this is limited by the size, quality, and heterogeneity of the data available from individual sources. Thus, large, clean and integrated databases of approved drug data, associated with fast and efficient predictive tools are desirable early in the drug discovery process. DESCRIPTION: We have built a relational database (IDAAPM) to integrate available approved drug data such as drug approval information, ADMET and adverse effects, chemical structures and molecular descriptors, targets, bioactivity and related references. The database has been coupled with a searchable web interface and modern data analytics platform (KNIME) to allow data access, data transformation, initial analysis and further predictive modeling. Data were extracted from FDA resources and supplemented from other publicly available databases. Currently, the database contains information regarding about 19,226 FDA approval applications for 31,815 products (small molecules and biologics) with their approval history, 2505 active ingredients, together with as many ADMET properties, 1629 molecular structures, 2.5 million adverse effects and 36,963 experimental drug-target bioactivity data. CONCLUSION: IDAAPM is a unique resource that, in a single relational database, provides detailed information on FDA approved drugs including their ADMET properties and adverse effects, the corresponding targets with bioactivity data, coupled with a data analytics platform. It can be used to perform basic to complex drug-target ADMET or adverse effects analysis and predictive modeling. IDAAPM is freely accessible at http://idaapm.helsinki.fi and can be exploited through a KNIME workflow connected to the database.Graphical abstractFDA approved drug data integration for predictive modeling.
Published in 2016
READ PUBLICATION →

MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES.

Authors: Correia RB, Li L, Rocha LM

Abstract: Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this "Bibliome", the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products-including cannabis-which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015.We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that Instagram contains much drug- and pathology specific data for public health monitoring of DDI and ADR, and that complex network analysis provides an important toolbox to extract health-related associations and their support from large-scale social media data.
Published in 2016
READ PUBLICATION →

Computational methods in drug discovery.

Authors: Leelananda SP, Lindert S

Abstract: The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein-ligand docking, pharmacophore modeling and QSAR techniques are reviewed.
Published in 2016
READ PUBLICATION →

Drug Repositioning for Alzheimer's Disease Based on Systematic 'omics' Data Mining.

Authors: Zhang M, Schmitt-Ulms G, Sato C, Xi Z, Zhang Y, Zhou Y, St George-Hyslop P, Rogaeva E

Abstract: Traditional drug development for Alzheimer's disease (AD) is costly, time consuming and burdened by a very low success rate. An alternative strategy is drug repositioning, redirecting existing drugs for another disease. The large amount of biological data accumulated to date warrants a comprehensive investigation to better understand AD pathogenesis and facilitate the process of anti-AD drug repositioning. Hence, we generated a list of anti-AD protein targets by analyzing the most recent publically available 'omics' data, including genomics, epigenomics, proteomics and metabolomics data. The information related to AD pathogenesis was obtained from the OMIM and PubMed databases. Drug-target data was extracted from the DrugBank and Therapeutic Target Database. We generated a list of 524 AD-related proteins, 18 of which are targets for 75 existing drugs-novel candidates for repurposing as anti-AD treatments. We developed a ranking algorithm to prioritize the anti-AD targets, which revealed CD33 and MIF as the strongest candidates with seven existing drugs. We also found 7 drugs inhibiting a known anti-AD target (acetylcholinesterase) that may be repurposed for treating the cognitive symptoms of AD. The CAD protein and 8 proteins implicated by two 'omics' approaches (ABCA7, APOE, BIN1, PICALM, CELF1, INPP5D, SPON1, and SOD3) might also be promising targets for anti-AD drug development. Our systematic 'omics' mining suggested drugs with novel anti-AD indications, including drugs modulating the immune system or reducing neuroinflammation that are particularly promising for AD intervention. Furthermore, the list of 524 AD-related proteins could be useful not only as potential anti-AD targets but also considered for AD biomarker development.