Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2016
READ PUBLICATION →

XMetDB: an open access database for xenobiotic metabolism.

Authors: Spjuth O, Rydberg P, Willighagen EL, Evelo CT, Jeliazkova N

Abstract: Xenobiotic metabolism is an active research topic but the limited amount of openly available high-quality biotransformation data constrains predictive modeling. Current database often default to commonly available information: which enzyme metabolizes a compound, but neither experimental conditions nor the atoms that undergo metabolization are captured. We present XMetDB, an open access database for drugs and other xenobiotics and their respective metabolites. The database contains chemical structures of xenobiotic biotransformations with substrate atoms annotated as reaction centra, the resulting product formed, and the catalyzing enzyme, type of experiment, and literature references. Associated with the database is a web interface for the submission and retrieval of experimental metabolite data for drugs and other xenobiotics in various formats, and a web API for programmatic access is also available. The database is open for data deposition, and a curation scheme is in place for quality control. An extensive guide on how to enter experimental data into is available from the XMetDB wiki. XMetDB formalizes how biotransformation data should be reported, and the openly available systematically labeled data is a big step forward towards better models for predictive metabolism.
Published in 2016
READ PUBLICATION →

Efficacy and Toxicity Assessment of Different Antibody Based Antiangiogenic Drugs by Computational Docking Method.

Authors: Mukherjee S, Chatterjee G, Ghosh M, Das B, Majumder D

Abstract: Bevacizumab and trastuzumab are two antibody based antiangiogenic drugs that are in clinical practice for the treatment of different cancers. Presently applications of these drugs are based on the empirical choice of clinical experts that follow towards population based clinical trials and, hence, their molecular efficacies in terms of quantitative estimates are not being explored. Moreover, different clinical trials with these drugs showed different toxicity symptoms in patients. Here, using molecular docking study, we made an attempt to reveal the molecular rationale regarding their efficacy and off-target toxicity. Though our study reinforces their antiangiogenic potentiality and, among the two, trastuzumab has much higher efficacy; however, this study also reveals that compared to bevacizumab, trastuzumab has higher toxicity effect, specially on the cardiovascular system. This study also reveals the molecular rationale of ocular dysfunction by antiangiogenic drugs. The molecular rationale of toxicity as revealed in this study may help in the judicious choice as well as therapeutic scheduling of these drugs in different cancers.
Published in 2016
READ PUBLICATION →

Non-covalent interactions involving halogenated derivatives of capecitabine and thymidylate synthase: a computational approach.

Authors: Rahman A, Hoque MM, Khan MA, Sarwar MG, Halim MA

Abstract: Capecitabine, a fluoropyrimidine prodrug, has been a frequently chosen ligand for the last one and half decades to inhibit thymidylate synthase (TYMS) for treatment of colorectal cancer. TYMS is a key enzyme for de novo synthesis of deoxythymidine monophosphate and subsequent synthesis of DNA. Recent years have also seen the trait of modifying ligands using halogens and trifluoromethyl (-CF3) group to ensure enhanced drug performance. In this study, in silico modification of capecitabine with Cl, Br, I atoms and -CF3 group has been performed. Density functional theory has been employed to optimize the drug molecules and elucidate their thermodynamic and electrical properties such as Gibbs free energy, enthalpy, electronic energy, dipole moment and frontier orbital features (HOMO-LUMO gap, hardness and softness). Flexible and rigid molecular docking have been implemented between drugs and the receptor TYMS. Both inter- and intra-molecular non-covalent interactions involving the amino acid residues of TYMS and the drug molecules are explored in details. The drugs were superimposed on the resolved crystal structure (at 1.9 A) of ZD1694/dUMP/TYMS system to shed light on similarity of the binding of capecitabine, and its modifiers, to that of ZD1694. Together, these results may provide more insights prior to synthesizing halogen-directed derivatives of capecitabine for anticancer treatment.
Published in 2016
READ PUBLICATION →

Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics.

Authors: Puniya BL, Allen L, Hochfelder C, Majumder M, Helikar T

Abstract: Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model's components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis-related components and tumor-suppressor genes, suggesting that this combinatorial perturbation may lead to a better target for decreasing cell proliferation and inducing apoptosis. Finally, our approach shows a potential to identify and prioritize therapeutic targets through systemic perturbation analysis of large-scale computational models of signal transduction. Although some components of the presented computational results have been validated against independent gene expression data sets, more laboratory experiments are warranted to more comprehensively validate the presented results.
Published in 2016
READ PUBLICATION →

Mining integrated semantic networks for drug repositioning opportunities.

Authors: Mullen J, Cockell SJ, Tipney H, Woollard PM, Wipat A

Abstract: Current research and development approaches to drug discovery have become less fruitful and more costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned drugs have been identified through serendipitous or rational observations, highlighting the need for more systematic methodologies to tackle the problem. Systems level approaches have the potential to enable the development of novel methods to understand the action of therapeutic compounds, but requires an integrative approach to biological data. Integrated networks can facilitate systems level analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets and their interactions. Classically, such networks can be mined manually where a skilled person is able to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs and highlight possible repositioning opportunities. However, this approach is not scalable. Automated approaches are required to systematically mine integrated networks for these subgraphs and bring them to the attention of the user. We introduce a formal framework for the definition of integrated networks and their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm allows instances of complex semantic subgraphs that contain data about putative drug repositioning opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network data. We demonstrate the utility of our approach by mining an integrated drug interaction network built from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a strong correlation between highly scored associations and those supported by literature. We discuss the 20 top ranked associations in more detail, of which 14 are novel and 6 are supported by the literature. We also show that our approach better prioritizes known drug-target interactions, than other state-of-the art approaches for predicting such interactions.
Published in 2016
READ PUBLICATION →

MINERVA-a platform for visualization and curation of molecular interaction networks.

Authors: Gawron P, Ostaszewski M, Satagopam V, Gebel S, Mazein A, Kuzma M, Zorzan S, McGee F, Otjacques B, Balling R, Schneider R

Abstract: Our growing knowledge about various molecular mechanisms is becoming increasingly more structured and accessible. Different repositories of molecular interactions and available literature enable construction of focused and high-quality molecular interaction networks. Novel tools for curation and exploration of such networks are needed, in order to foster the development of a systems biology environment. In particular, solutions for visualization, annotation and data cross-linking will facilitate usage of network-encoded knowledge in biomedical research. To this end we developed the MINERVA (Molecular Interaction NEtwoRks VisuAlization) platform, a standalone webservice supporting curation, annotation and visualization of molecular interaction networks in Systems Biology Graphical Notation (SBGN)-compliant format. MINERVA provides automated content annotation and verification for improved quality control. The end users can explore and interact with hosted networks, and provide direct feedback to content curators. MINERVA enables mapping drug targets or overlaying experimental data on the visualized networks. Extensive export functions enable downloading areas of the visualized networks as SBGN-compliant models for efficient reuse of hosted networks. The software is available under Affero GPL 3.0 as a Virtual Machine snapshot, Debian package and Docker instance at http://r3lab.uni.lu/web/minerva-website/. We believe that MINERVA is an important contribution to systems biology community, as its architecture enables set-up of locally or globally accessible SBGN-oriented repositories of molecular interaction networks. Its functionalities allow overlay of multiple information layers, facilitating exploration of content and interpretation of data. Moreover, annotation and verification workflows of MINERVA improve the efficiency of curation of networks, allowing life-science researchers to better engage in development and use of biomedical knowledge repositories.
Published in 2016
READ PUBLICATION →

Consensus Diversity Plots: a global diversity analysis of chemical libraries.

Authors: Gonzalez-Medina M, Prieto-Martinez FD, Owen JR, Medina-Franco JL

Abstract: BACKGROUND: Measuring the structural diversity of compound databases is relevant in drug discovery and many other areas of chemistry. Since molecular diversity depends on molecular representation, comprehensive chemoinformatic analysis of the diversity of libraries uses multiple criteria. For instance, the diversity of the molecular libraries is typically evaluated employing molecular scaffolds, structural fingerprints, and physicochemical properties. However, the assessment with each criterion is analyzed independently and it is not straightforward to provide an evaluation of the "global diversity". RESULTS: Herein the Consensus Diversity Plot (CDP) is proposed as a novel method to represent in low dimensions the diversity of chemical libraries considering simultaneously multiple molecular representations. We illustrate the application of CDPs to classify eight compound data sets and two subsets with different sizes and compositions using molecular scaffolds, structural fingerprints, and physicochemical properties. CONCLUSIONS: CDPs are general data mining tools that represent in two-dimensions the global diversity of compound data sets using multiple metrics. These plots can be constructed using single or combined measures of diversity. An online version of the CDPs is freely available at: https://consensusdiversityplots-difacquim-unam.shinyapps.io/RscriptsCDPlots/.Grap hical AbstractConsensus Diversity Plot is a novel data mining tool that represents in two-dimensions the global diversity of compound data sets using multiple metrics.
Published in 2016
READ PUBLICATION →

Prediction of Candidate Drugs for Treating Pancreatic Cancer by Using a Combined Approach.

Authors: Ma Y, Hu J, Zhang N, Dong X, Li Y, Yang B, Tian W, Wang X

Abstract: Pancreatic cancer is the leading cause of death from solid malignancies worldwide. Currently, gemcitabine is the only drug approved for treating pancreatic cancer. Developing new therapeutic drugs for this disease is, therefore, an urgent need. The C-Map project has provided a wealth of gene expression data that can be mined for repositioning drugs, a promising approach to new drug discovery. Typically, a drug is considered potentially useful for treating a disease if the drug-induced differential gene expression profile is negatively correlated with the differentially expressed genes in the target disease. However, many of the potentially useful drugs (PUDs) identified by gene expression profile correlation are likely false positives because, in C-Map, the cultured cell lines to which the drug is applied are not derived from diseased tissues. To solve this problem, we developed a combined approach for predicting candidate drugs for treating pancreatic cancer. We first identified PUDs for pancreatic cancer by using C-Map-based gene expression correlation analyses. We then applied an algorithm (Met-express) to predict key pancreatic cancer (KPC) enzymes involved in pancreatic cancer metabolism. Finally, we selected candidates from the PUDs by requiring that their targets be KPC enzymes or the substrates/products of KPC enzymes. Using this combined approach, we predicted seven candidate drugs for treating pancreatic cancer, three of which are supported by literature evidence, and three were experimentally validated to be inhibitory to pancreatic cancer celllines.
Published in 2016
READ PUBLICATION →

Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems.

Authors: Herrando-Grabulosa M, Mulet R, Pujol A, Mas JM, Navarro X, Aloy P, Coma M, Casas C

Abstract: Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology), we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis.
Published in 2016
READ PUBLICATION →

Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.

Authors: Uddin R, Sufian M

Abstract: BACKGROUND: Infections caused by Salmonella enterica, a Gram-negative facultative anaerobic bacteria belonging to the family of Enterobacteriaceae, are major threats to the health of humans and animals. The recent availability of complete genome data of pathogenic strains of the S. enterica gives new avenues for the identification of drug targets and drug candidates. We have used the genomic and metabolic pathway data to identify pathways and proteins essential to the pathogen and absent from the host. METHODS: We took the whole proteome sequence data of 42 strains of S. enterica and Homo sapiens along with KEGG-annotated metabolic pathway data, clustered proteins sequences using CD-HIT, identified essential genes using DEG database and discarded S. enterica homologs of human proteins in unique metabolic pathways (UMPs) and characterized hypothetical proteins with SVM-prot and InterProScan. Through this core proteomic analysis we have identified enzymes essential to the pathogen. RESULTS: The identification of 73 enzymes common in 42 strains of S. enterica is the real strength of the current study. We proposed all 73 unexplored enzymes as potential drug targets against the infections caused by the S. enterica. The study is comprehensive around S. enterica and simultaneously considered every possible pathogenic strain of S. enterica. This comprehensiveness turned the current study significant since, to the best of our knowledge it is the first subtractive core proteomic analysis of the unique metabolic pathways applied to any pathogen for the identification of drug targets. We applied extensive computational methods to shortlist few potential drug targets considering the druggability criteria e.g. Non-homologous to the human host, essential to the pathogen and playing significant role in essential metabolic pathways of the pathogen (i.e. S. enterica). In the current study, the subtractive proteomics through a novel approach was applied i.e. by considering only proteins of the unique metabolic pathways of the pathogens and mining the proteomic data of all completely sequenced strains of the pathogen, thus improving the quality and application of the results. We believe that the sharing of the knowledge from this study would eventually lead to bring about novel and unique therapeutic regimens against the infections caused by the S. enterica.