Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on June 30, 2016
READ PUBLICATION →

Integrative analysis of cancer genes in a functional interactome.

Authors: Ung MH, Liu CC, Cheng C

Abstract: The post-genomic era has resulted in the accumulation of high-throughput cancer data from a vast array of genomic technologies including next-generation sequencing and microarray. As such, the large amounts of germline variant and somatic mutation data that have been generated from GWAS and sequencing projects, respectively, show great promise in providing a systems-level view of these genetic aberrations. In this study, we analyze publicly available GWAS, somatic mutation, and drug target data derived from large databanks using a network-based approach that incorporates directed edge information under a randomized network hypothesis testing procedure. We show that these three classes of disease-associated nodes exhibit non-random topological characteristics in the context of a functional interactome. Specifically, we show that drug targets tend to lie upstream of somatic mutations and disease susceptibility germline variants. In addition, we introduce a new approach to measuring hierarchy between drug targets, somatic mutants, and disease susceptibility genes by utilizing directionality and path length information. Overall, our results provide new insight into the intrinsic relationships between these node classes that broaden our understanding of cancer. In addition, our results align with current knowledge on the therapeutic actionability of GWAS and somatic mutant nodes, while demonstrating relationships between node classes from a global network perspective.
Published on June 30, 2016
READ PUBLICATION →

SM-TF: A structural database of small molecule-transcription factor complexes.

Authors: Xu X, Ma Z, Sun H, Zou X

Abstract: Transcription factors (TFs) are the proteins involved in the transcription process, ensuring the correct expression of specific genes. Numerous diseases arise from the dysfunction of specific TFs. In fact, over 30 TFs have been identified as therapeutic targets of about 9% of the approved drugs. In this study, we created a structural database of small molecule-transcription factor (SM-TF) complexes, available online at http://zoulab.dalton.missouri.edu/SM-TF. The 3D structures of the co-bound small molecule and the corresponding binding sites on TFs are provided in the database, serving as a valuable resource to assist structure-based drug design related to TFs. Currently, the SM-TF database contains 934 entries covering 176 TFs from a variety of species. The database is further classified into several subsets by species and organisms. The entries in the SM-TF database are linked to the UniProt database and other sequence-based TF databases. Furthermore, the druggable TFs from human and the corresponding approved drugs are linked to the DrugBank. (c) 2016 Wiley Periodicals, Inc.
Published on June 30, 2016
READ PUBLICATION →

Palladium-Catalyzed alpha-Arylation of Methyl Sulfonamides with Aryl Chlorides.

Authors: Zheng B, Li M, Gao G, He Y, Walsh PJ

Abstract: A Palladium-catalyzed alpha-arylation of sulfonamides with aryl chlorides is presented. A Buchwald type precatalyst formed with Kwong's indole-based ligand enabled this transformation to be compatible with a large variety of methyl sulfonamides and aryl chlorides in good to excellent yields. Importantly, under the optimized reaction conditions, only mono-arylated products were observed. This method has been applied to the efficient synthesis of sumatriptan, which is used to treat migraines.
Published in June 2016
READ PUBLICATION →

Counting on natural products for drug design.

Authors: Rodrigues T, Reker D, Schneider P, Schneider G

Abstract: Natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Recently, there has been a revitalization of interest in the inclusion of these chemotypes in compound collections for screening and achieving selective target modulation. Here we discuss natural-product-inspired drug discovery with a focus on recent advances in the design of synthetically tractable small molecules that mimic nature's chemistry. We highlight the potential of innovative computational tools in processing structurally complex natural products to predict their macromolecular targets and attempt to forecast the role that natural-product-derived fragments and fragment-like natural products will play in next-generation drug discovery.
Published in June 2016
READ PUBLICATION →

Discovery of ERBB3 inhibitors for non-small cell lung cancer (NSCLC) via virtual screening.

Authors: Guo R, Zhang Y, Li X, Song X, Li D, Zhao Y

Abstract: As a member of the epidermal growth factor receptor family (EGFR) of receptor tyrosine kinases, ERBB3 plays an important role in mediating cellular growth and differentiation. Recent research works identified that CD74-NRG1 fusions lead to overexpression of the EGF-like domain of NRG1, and thus activate ERBB3 and PI3K-AKT signaling pathways. The fusion was detected in lung adenocarcinomas, and served as an important oncogenic factor for ERBB3 driven cancers. A sequential virtual screening strategy has been applied to ERBB3 crystal structure using databases of natural products and Chinese traditional medicine compounds, and led to identification of a group of small molecular compounds potentially capable of blocking ERBB3. Six small molecular compounds were selected for in vitro analysis. Five of these molecules significantly inhibited the growth of A549 cells. Among them, compound VS1 is the most promising one with IC50 values of 269.75 muM, comparing to the positive control of nimustine hydrochloride with IC50 values of 264.14 muM. With good specificity and predicted ADMET results, our results support the feasibility by using a pharmacophore of the compound VS1 for designing and optimization of ERBB3 inhibitors.
Published in June 2016
READ PUBLICATION →

Comparative analysis of housekeeping and tissue-selective genes in human based on network topologies and biological properties.

Authors: Yang L, Wang S, Zhou M, Chen X, Zuo Y, Sun D, Lv Y

Abstract: Housekeeping genes are genes that are turned on most of the time in almost every tissue to maintain cellular functions. Tissue-selective genes are predominantly expressed in one or a few biologically relevant tissue types. Benefitting from the massive gene expression microarray data obtained over the past decades, the properties of housekeeping and tissue-selective genes can now be investigated on a large-scale manner. In this study, we analyzed the topological properties of housekeeping and tissue-selective genes in the protein-protein interaction (PPI) network. Furthermore, we compared the biological properties and amino acid usage between these two gene groups. The results indicated that there were significant differences in topological properties between housekeeping and tissue-selective genes in the PPI network, and housekeeping genes had higher centrality properties and may play important roles in the complex biological network environment. We also found that there were significant differences in multiple biological properties and many amino acid compositions. The functional genes enrichment and subcellular localizations analysis was also performed to investigate the characterization of housekeeping and tissue-selective genes. The results indicated that the two gene groups showed significant different enrichment in drug targets, disease genes and toxin targets, and located in different subcellular localizations. At last, the discriminations between the properties of two gene groups were measured by the F-score, and expression stage had the most discriminative index in all properties. These findings may elucidate the biological mechanisms for understanding housekeeping and tissue-selective genes and may contribute to better annotate housekeeping and tissue-selective genes in other organisms.
Published on June 23, 2016
READ PUBLICATION →

Proteome-wide covalent ligand discovery in native biological systems.

Authors: Backus KM, Correia BE, Lum KM, Forli S, Horning BD, Gonzalez-Paez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson AJ, Wolan DW, Cravatt BF

Abstract: Small molecules are powerful tools for investigating protein function and can serve as leads for new therapeutics. Most human proteins, however, lack small-molecule ligands, and entire protein classes are considered 'undruggable'. Fragment-based ligand discovery can identify small-molecule probes for proteins that have proven difficult to target using high-throughput screening of complex compound libraries. Although reversibly binding ligands are commonly pursued, covalent fragments provide an alternative route to small-molecule probes, including those that can access regions of proteins that are difficult to target through binding affinity alone. Here we report a quantitative analysis of cysteine-reactive small-molecule fragments screened against thousands of proteins in human proteomes and cells. Covalent ligands were identified for >700 cysteines found in both druggable proteins and proteins deficient in chemical probes, including transcription factors, adaptor/scaffolding proteins, and uncharacterized proteins. Among the atypical ligand-protein interactions discovered were compounds that react preferentially with pro- (inactive) caspases. We used these ligands to distinguish extrinsic apoptosis pathways in human cell lines versus primary human T cells, showing that the former is largely mediated by caspase-8 while the latter depends on both caspase-8 and -10. Fragment-based covalent ligand discovery provides a greatly expanded portrait of the ligandable proteome and furnishes compounds that can illuminate protein functions in native biological systems.
Published on June 21, 2016
READ PUBLICATION →

Identification of associations between small molecule drugs and miRNAs based on functional similarity.

Authors: Wang J, Meng F, Dai E, Yang F, Wang S, Chen X, Yang L, Wang Y, Jiang W

Abstract: MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression at post-transcriptional level. Increasing evidences show aberrant expression of miRNAs in varieties of diseases. Targeting the dysregulated miRNAs with small molecule drugs has become a novel therapy for many human diseases, especially cancer. Here, we proposed a novel computational approach to identify associations between small molecules and miRNAs based on functional similarity of differentially expressed genes. At the significance level of p < 0.01, we constructed the small molecule and miRNA functional similarity network involving 111 small molecules and 20 miRNAs. Moreover, we also predicted associations between drugs and diseases through integrating our identified small molecule-miRNA associations with experimentally validated disease related miRNAs. As a result, we identified 2265 associations between FDA approved drugs and diseases, in which ~35% associations have been validated by comprehensive literature reviews. For breast cancer, we identified 19 potential drugs, in which 12 drugs were supported by previous studies. In addition, we performed survival analysis for the patients from TCGA and GEO database, which indicated that the associated miRNAs of 4 drugs might be good prognosis markers in breast cancer. Collectively, this study proposed a novel approach to predict small molecule and miRNA associations based on functional similarity, which may pave a new way for miRNA-targeted therapy and drug repositioning.
Published on June 21, 2016
READ PUBLICATION →

Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network.

Authors: Huang H, He Y, Li W, Wei W, Li Y, Xie R, Guo S, Wang Y, Jiang J, Chen B, Lv J, Zhang N, Chen L, He W

Abstract: Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases.
Published on June 20, 2016
READ PUBLICATION →

A Double Whammy: Targeting Both Fatty Acid Amide Hydrolase (FAAH) and Cyclooxygenase (COX) To Treat Pain and Inflammation.

Authors: Scarpelli R, Sasso O, Piomelli D

Abstract: Pain states that arise from non-resolving inflammation, such as inflammatory bowel disease or arthritis, pose an unusually difficult challenge for therapy because of the complexity and heterogeneity of their underlying mechanisms. It has been suggested that key nodes linking interactive pathogenic pathways of non-resolving inflammation might offer novel targets for the treatment of inflammatory pain. Nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit the cyclooxygenase (COX)-mediated production of pain- and inflammation-inducing prostanoids, are a common first-line treatment for this condition, but their use is limited by mechanism-based side effects. The endogenous levels of anandamide, an endocannabinoid mediator with analgesic and tissue-protective functions, are regulated by fatty acid amide hydrolase (FAAH). This review outlines the pharmacological and chemical rationale for the simultaneous inhibition of COX and FAAH activities with designed multitarget agents. Preclinical studies indicate that such agents may combine superior anti-inflammatory efficacy with reduced toxicity.