Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on March 2, 2016
READ PUBLICATION →

Genome and network visualization facilitates the analyses of the effects of drugs and mutations on protein-protein and drug-protein networks.

Authors: Ceol A, Verhoef LG, Wade M, Muller H

Abstract: BACKGROUND: Biologists generally interrogate genomics data using web-based genome browsers that have limited analytical potential. New generation genome browsers such as the Integrated Genome Browser (IGB) have largely overcome this limitation and permit customized analyses to be implemented using plugins. We illustrate the use of a plugin for IGB that exploits advanced visualization techniques to integrate the analysis of genomics data with network and structural approaches. RESULTS: We show how visualization technologies that combine both genomics and network biology can facilitate the selection of the key amino acid contacts from protein-protein and protein-drug interactions. Starting from the MDM2-P53 interaction, which is a high-value target for cancer therapy, and Nutlin, the parent small molecule of an MDM2 antagonist that is currently in clinical trials, we show that this method can be generalized to analyze how drugs and mutations can interfere with both protein-protein and drug-protein networks. We illustrate this point by two additional use-cases exploring the molecular basis of tamoxifen side effects and of drug resistance in chronic myeloid leukemia patients. CONCLUSIONS: Combined network and structure biology approaches provide key insights into both the genetic and the edgetic roles of variants in diseases. 3D interactomes facilitate the identification of disease-relevant interactions that can then be specifically targeted by drugs. Recent advances in molecular interaction and structure visualization tools have greatly simplified the mapping of mutated residues to molecular interaction interfaces. Such approaches can now also be integrated with genome visualization tools to enable comparative analyses of interaction contacts.
Published on March 1, 2016
READ PUBLICATION →

Drug Repurposing Identifies Inhibitors of Oseltamivir-Resistant Influenza Viruses.

Authors: Bao J, Marathe B, Govorkova EA, Zheng JJ

Abstract: The neuraminidase (NA) inhibitor, oseltamivir, is a widely used anti-influenza drug. However, oseltamivir-resistant H1N1 influenza viruses carrying the H275Y NA mutation spontaneously emerged as a result of natural genetic drift and drug treatment. Because H275Y and other potential mutations may generate a future pandemic influenza strain that is oseltamivir-resistant, alternative therapy options are needed. Herein, we show that a structure-based computational method can be used to identify existing drugs that inhibit resistant viruses, thereby providing a first line of pharmaceutical defense against this possible scenario. We identified two drugs, nalidixic acid and dorzolamide, that potently inhibit the NA activity of oseltamivir-resistant H1N1 viruses with the H275Y NA mutation at very low concentrations, but have no effect on wild-type H1N1 NA even at a much higher concentration, suggesting that the oseltamivir-resistance mutation itself caused susceptibility to these drugs.
Published on March 1, 2016
READ PUBLICATION →

Significant impact of miRNA-target gene networks on genetics of human complex traits.

Authors: Okada Y, Muramatsu T, Suita N, Kanai M, Kawakami E, Iotchkova V, Soranzo N, Inazawa J, Tanaka T

Abstract: The impact of microRNA (miRNA) on the genetics of human complex traits, especially in the context of miRNA-target gene networks, has not been fully assessed. Here, we developed a novel analytical method, MIGWAS, to comprehensively evaluate enrichment of genome-wide association study (GWAS) signals in miRNA-target gene networks. We applied the method to the GWAS results of the 18 human complex traits from >1.75 million subjects, and identified significant enrichment in rheumatoid arthritis (RA), kidney function, and adult height (P < 0.05/18 = 0.0028, most significant enrichment in RA with P = 1.7 x 10(-4)). Interestingly, these results were consistent with current literature-based knowledge of the traits on miRNA obtained through the NCBI PubMed database search (adjusted P = 0.024). Our method provided a list of miRNA and target gene pairs with excess genetic association signals, part of which included drug target genes. We identified a miRNA (miR-4728-5p) that downregulates PADI2, a novel RA risk gene considered as a promising therapeutic target (rs761426, adjusted P = 2.3 x 10(-9)). Our study indicated the significant impact of miRNA-target gene networks on the genetics of human complex traits, and provided resources which should contribute to drug discovery and nucleic acid medicine.
Published in February 2016
READ PUBLICATION →

A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

Authors: Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL, Burdon KP, Hebbring SJ, Wen C, Gorski M, Kim IK, Cho D, Zack D, Souied E, Scholl HP, Bala E, Lee KE, Hunter DJ, Sardell RJ, Mitchell P, Merriam JE, Cipriani V, Hoffman JD, Schick T, Lechanteur YT, Guymer RH, Johnson MP, Jiang Y, Stanton CM, Buitendijk GH, Zhan X, Kwong AM, Boleda A, Brooks M, Gieser L, Ratnapriya R, Branham KE, Foerster JR, Heckenlively JR, Othman MI, Vote BJ, Liang HH, Souzeau E, McAllister IL, Isaacs T, Hall J, Lake S, Mackey DA, Constable IJ, Craig JE, Kitchner TE, Yang Z, Su Z, Luo H, Chen D, Ouyang H, Flagg K, Lin D, Mao G, Ferreyra H, Stark K, von Strachwitz CN, Wolf A, Brandl C, Rudolph G, Olden M, Morrison MA, Morgan DJ, Schu M, Ahn J, Silvestri G, Tsironi EE, Park KH, Farrer LA, Orlin A, Brucker A, Li M, Curcio CA, Mohand-Said S, Sahel JA, Audo I, Benchaboune M, Cree AJ, Rennie CA, Goverdhan SV, Grunin M, Hagbi-Levi S, Campochiaro P, Katsanis N, Holz FG, Blond F, Blanche H, Deleuze JF, Igo RP Jr, Truitt B, Peachey NS, Meuer SM, Myers CE, Moore EL, Klein R, Hauser MA, Postel EA, Courtenay MD, Schwartz SG, Kovach JL, Scott WK, Liew G, Tan AG, Gopinath B, Merriam JC, Smith RT, Khan JC, Shahid H, Moore AT, McGrath JA, Laux R, Brantley MA Jr, Agarwal A, Ersoy L, Caramoy A, Langmann T, Saksens NT, de Jong EK, Hoyng CB, Cain MS, Richardson AJ, Martin TM, Blangero J, Weeks DE, Dhillon B, van Duijn CM, Doheny KF, Romm J, Klaver CC, Hayward C, Gorin MB, Klein ML, Baird PN, den Hollander AI, Fauser S, Yates JR, Allikmets R, Wang JJ, Schaumberg DA, Klein BE, Hagstrom SA, Chowers I, Lotery AJ, Leveillard T, Zhang K, Brilliant MH, Hewitt AW, Swaroop A, Chew EY, Pericak-Vance MA, DeAngelis M, Stambolian D, Haines JL, Iyengar SK, Weber BH, Abecasis GR, Heid IM

Abstract: Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 x 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 x 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.
Published in February 2016
READ PUBLICATION →

Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction.

Authors: Liu Y, Wu M, Miao C, Zhao P, Li XL

Abstract: In pharmaceutical sciences, a crucial step of the drug discovery process is the identification of drug-target interactions. However, only a small portion of the drug-target interactions have been experimentally validated, as the experimental validation is laborious and costly. To improve the drug discovery efficiency, there is a great need for the development of accurate computational approaches that can predict potential drug-target interactions to direct the experimental verification. In this paper, we propose a novel drug-target interaction prediction algorithm, namely neighborhood regularized logistic matrix factorization (NRLMF). Specifically, the proposed NRLMF method focuses on modeling the probability that a drug would interact with a target by logistic matrix factorization, where the properties of drugs and targets are represented by drug-specific and target-specific latent vectors, respectively. Moreover, NRLMF assigns higher importance levels to positive observations (i.e., the observed interacting drug-target pairs) than negative observations (i.e., the unknown pairs). Because the positive observations are already experimentally verified, they are usually more trustworthy. Furthermore, the local structure of the drug-target interaction data has also been exploited via neighborhood regularization to achieve better prediction accuracy. We conducted extensive experiments over four benchmark datasets, and NRLMF demonstrated its effectiveness compared with five state-of-the-art approaches.
Published in February 2016
READ PUBLICATION →

Systematic Prioritization of Druggable Mutations in approximately 5000 Genomes Across 16 Cancer Types Using a Structural Genomics-based Approach.

Authors: Zhao J, Cheng F, Wang Y, Arteaga CL, Zhao Z

Abstract: A massive amount of somatic mutations has been cataloged in large-scale projects such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium projects. The majority of the somatic mutations found in tumor genomes are neutral 'passenger' rather than damaging "driver" mutations. Now, understanding their biological consequences and prioritizing them for druggable targets are urgently needed. Thanks to the rapid advances in structural genomics technologies (e.g. X-ray), large-scale protein structural data has now been made available, providing critical information for deciphering functional roles of mutations in cancer and prioritizing those alterations that may mediate drug binding at the atom resolution and, as such, be druggable targets. We hypothesized that mutations at protein-ligand binding-site residues are likely to be druggable targets. Thus, to prioritize druggable mutations, we developed SGDriver, a structural genomics-based method incorporating the somatic missense mutations into protein-ligand binding-site residues using a Bayes inference statistical framework. We applied SGDriver to 746,631 missense mutations observed in 4997 tumor-normal pairs across 16 cancer types from The Cancer Genome Atlas. SGDriver detected 14,471 potential druggable mutations in 2091 proteins (including 1,516 recurrently mutated proteins) across 3558 cancer genomes (71.2%), and further identified 298 proteins harboring mutations that were significantly enriched at protein-ligand binding-site residues (adjusted p value < 0.05). The identified proteins are significantly enriched in both oncoproteins and tumor suppressors. The follow-up drug-target network analysis suggested 98 known and 126 repurposed druggable anticancer targets (e.g. SPOP and NR3C1). Furthermore, our integrative analysis indicated that 13% of patients might benefit from current targeted therapy, and this -proportion would increase to 31% when considering drug repositioning. This study provides a testable strategy for prioritizing druggable mutations in precision cancer medicine.
Published on February 26, 2016
READ PUBLICATION →

An Integrative Pharmacogenomic Approach Identifies Two-drug Combination Therapies for Personalized Cancer Medicine.

Authors: Liu Y, Fei T, Zheng X, Brown M, Zhang P, Liu XS, Wang H

Abstract: An individual tumor harbors multiple molecular alterations that promote cell proliferation and prevent apoptosis and differentiation. Drugs that target specific molecular alterations have been introduced into personalized cancer medicine, but their effects can be modulated by the activities of other genes or molecules. Previous studies aiming to identify multiple molecular alterations for combination therapies are limited by available data. Given the recent large scale of available pharmacogenomic data, it is possible to systematically identify multiple biomarkers that contribute jointly to drug sensitivity, and to identify combination therapies for personalized cancer medicine. In this study, we used pharmacogenomic profiling data provided from two independent cohorts in a systematic in silico investigation of perturbed genes cooperatively associated with drug sensitivity. Our study predicted many pairs of molecular biomarkers that may benefit from the use of combination therapies. One of our predicted biomarker pairs, a mutation in the BRAF gene and upregulated expression of the PIM1 gene, was experimentally validated to benefit from a therapy combining BRAF inhibitor and PIM1 inhibitor in lung cancer. This study demonstrates how pharmacogenomic data can be used to systematically identify potentially cooperative genes and provide novel insights to combination therapies in personalized cancer medicine.
Published on February 25, 2016
READ PUBLICATION →

New strategy for drug discovery by large-scale association analysis of molecular networks of different species.

Authors: Zhang B, Fu Y, Huang C, Zheng C, Wu Z, Zhang W, Yang X, Gong F, Li Y, Chen X, Gao S, Chen X, Li Y, Lu A, Wang Y

Abstract: The development of modern omics technology has not significantly improved the efficiency of drug development. Rather precise and targeted drug discovery remains unsolved. Here a large-scale cross-species molecular network association (CSMNA) approach for targeted drug screening from natural sources is presented. The algorithm integrates molecular network omics data from humans and 267 plants and microbes, establishing the biological relationships between them and extracting evolutionarily convergent chemicals. This technique allows the researcher to assess targeted drugs for specific human diseases based on specific plant or microbe pathways. In a perspective validation, connections between the plant Halliwell-Asada (HA) cycle and the human Nrf2-ARE pathway were verified and the manner by which the HA cycle molecules act on the human Nrf2-ARE pathway as antioxidants was determined. This shows the potential applicability of this approach in drug discovery. The current method integrates disparate evolutionary species into chemico-biologically coherent circuits, suggesting a new cross-species omics analysis strategy for rational drug development.
Published on February 25, 2016
READ PUBLICATION →

Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique.

Authors: Hao M, Wang Y, Bryant SH

Abstract: Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision-recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets.
Published on February 19, 2016
READ PUBLICATION →

Discovering gene re-ranking efficiency and conserved gene-gene relationships derived from gene co-expression network analysis on breast cancer data.

Authors: Bourdakou MM, Athanasiadis EI, Spyrou GM

Abstract: Systemic approaches are essential in the discovery of disease-specific genes, offering a different perspective and new tools on the analysis of several types of molecular relationships, such as gene co-expression or protein-protein interactions. However, due to lack of experimental information, this analysis is not fully applicable. The aim of this study is to reveal the multi-potent contribution of statistical network inference methods in highlighting significant genes and interactions. We have investigated the ability of statistical co-expression networks to highlight and prioritize genes for breast cancer subtypes and stages in terms of: (i) classification efficiency, (ii) gene network pattern conservation, (iii) indication of involved molecular mechanisms and (iv) systems level momentum to drug repurposing pipelines. We have found that statistical network inference methods are advantageous in gene prioritization, are capable to contribute to meaningful network signature discovery, give insights regarding the disease-related mechanisms and boost drug discovery pipelines from a systems point of view.