Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on February 18, 2016
READ PUBLICATION →

Drug repurposing to target Ebola virus replication and virulence using structural systems pharmacology.

Authors: Zhao Z, Martin C, Fan R, Bourne PE, Xie L

Abstract: BACKGROUND: The recent outbreak of Ebola has been cited as the largest in history. Despite this global health crisis, few drugs are available to efficiently treat Ebola infections. Drug repurposing provides a potentially efficient solution to accelerating the development of therapeutic approaches in response to Ebola outbreak. To identify such candidates, we use an integrated structural systems pharmacology pipeline which combines proteome-scale ligand binding site comparison, protein-ligand docking, and Molecular Dynamics (MD) simulation. RESULTS: One thousand seven hundred and sixty-six FDA-approved drugs and 259 experimental drugs were screened to identify those with the potential to inhibit the replication and virulence of Ebola, and to determine the binding modes with their respective targets. Initial screening has identified a number of promising hits. Notably, Indinavir; an HIV protease inhibitor, may be effective in reducing the virulence of Ebola. Additionally, an antifungal (Sinefungin) and several anti-viral drugs (e.g. Maraviroc, Abacavir, Telbivudine, and Cidofovir) may inhibit Ebola RNA-directed RNA polymerase through targeting the MTase domain. CONCLUSIONS: Identification of safe drug candidates is a crucial first step toward the determination of timely and effective therapeutic approaches to address and mitigate the impact of the Ebola global crisis and future outbreaks of pathogenic diseases. Further in vitro and in vivo testing to evaluate the anti-Ebola activity of these drugs is warranted.
Published on February 16, 2016
READ PUBLICATION →

BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine.

Authors: Liu Z, Guo F, Wang Y, Li C, Zhang X, Li H, Diao L, Gu J, Wang W, Li D, He F

Abstract: Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM's diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients' target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ's cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the "multi-component, multi-target and multi-pathway" combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM's molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.
Published on February 15, 2016
READ PUBLICATION →

PDID: database of molecular-level putative protein-drug interactions in the structural human proteome.

Authors: Wang C, Hu G, Wang K, Brylinski M, Xie L, Kurgan L

Abstract: MOTIVATION: Many drugs interact with numerous proteins besides their intended therapeutic targets and a substantial portion of these interactions is yet to be elucidated. Protein-Drug Interaction Database (PDID) addresses incompleteness of these data by providing access to putative protein-drug interactions that cover the entire structural human proteome. RESULTS: PDID covers 9652 structures from 3746 proteins and houses 16 800 putative interactions generated from close to 1.1 million accurate, all-atom structure-based predictions for several dozens of popular drugs. The predictions were generated with three modern methods: ILbind, SMAP and eFindSite. They are accompanied by propensity scores that quantify likelihood of interactions and coordinates of the putative location of the binding drugs in the corresponding protein structures. PDID complements the current databases that focus on the curated interactions and the BioDrugScreen database that relies on docking to find putative interactions. Moreover, we also include experimentally curated interactions which are linked to their sources: DrugBank, BindingDB and Protein Data Bank. Our database can be used to facilitate studies related to polypharmacology of drugs including repurposing and explaining side effects of drugs. AVAILABILITY AND IMPLEMENTATION: PDID database is freely available at http://biomine.ece.ualberta.ca/PDID/.
Published on February 9, 2016
READ PUBLICATION →

ksRepo: a generalized platform for computational drug repositioning.

Authors: Brown AS, Kong SW, Kohane IS, Patel CJ

Abstract: BACKGROUND: Repositioning approved drug and small molecules in novel therapeutic areas is of key interest to the pharmaceutical industry. A number of promising computational techniques have been developed to aid in repositioning, however, the majority of available methodologies require highly specific data inputs that preclude the use of many datasets and databases. There is a clear unmet need for a generalized methodology that enables the integration of multiple types of both gene expression data and database schema. RESULTS: ksRepo eliminates the need for a single microarray platform as input and allows for the use of a variety of drug and chemical exposure databases. We tested ksRepo's performance on a set of five prostate cancer datasets using the Comparative Toxicogenomics Database (CTD) as our database of gene-compound interactions. ksRepo successfully predicted significance for five frontline prostate cancer therapies, representing a significant enrichment from over 7000 CTD compounds, and achieved specificity similar to other repositioning methods. CONCLUSIONS: We present ksRepo, which enables investigators to use any data inputs for computational drug repositioning. ksRepo is implemented in a series of four functions in the R statistical environment under a BSD3 license. Source code is freely available at http://github.com/adam-sam-brown/ksRepo. A vignette is provided to aid users in performing ksRepo analysis.
Published on February 8, 2016
READ PUBLICATION →

The exploration of network motifs as potential drug targets from post-translational regulatory networks.

Authors: Zhang XD, Song J, Bork P, Zhao XM

Abstract: Phosphorylation and proteolysis are among the most common post-translational modifications (PTMs), and play critical roles in various biological processes. More recent discoveries imply that the crosstalks between these two PTMs are involved in many diseases. In this work, we construct a post-translational regulatory network (PTRN) consists of phosphorylation and proteolysis processes, which enables us to investigate the regulatory interplays between these two PTMs. With the PTRN, we identify some functional network motifs that are significantly enriched with drug targets, some of which are further found to contain multiple proteins targeted by combinatorial drugs. These findings imply that the network motifs may be used to predict targets when designing new drugs. Inspired by this, we propose a novel computational approach called NetTar for predicting drug targets using the identified network motifs. Benchmarking results on real data indicate that our approach can be used for accurate prediction of novel proteins targeted by known drugs.
Published on February 2, 2016
READ PUBLICATION →

Integrative bioinformatic analyses of an oncogenomic profile reveal the biology of endometrial cancer and guide drug discovery.

Authors: Wong HS, Juan YS, Wu MS, Zhang YF, Hsu YW, Chen HH, Liu WM, Chang WC

Abstract: A major challenge in personalized cancer medicine is to establish a systematic approach to translate huge oncogenomic datasets to clinical situations and facilitate drug discovery for cancers such as endometrial carcinoma. We performed a genome-wide somatic mutation-expression association study in a total of 219 endometrial cancer patients from TCGA database, by evaluating the correlation between ~5,800 somatic mutations to ~13,500 gene expression levels (in total, ~78, 500, 000 pairs). A bioinformatics pipeline was devised to identify expression-associated single nucleotide variations (eSNVs) which are crucial for endometrial cancer progression and patient prognoses. We further prioritized 394 biologically risky mutational candidates which mapped to 275 gene loci and demonstrated that these genes collaborated with expression features were significantly enriched in targets of drugs approved for solid tumors, suggesting the plausibility of drug repurposing. Taken together, we integrated a fundamental endometrial cancer genomic profile into clinical circumstances, further shedding light for clinical implementation of genomic-based therapies and guidance for drug discovery.
Published on February 1, 2016
READ PUBLICATION →

Network-based in silico drug efficacy screening.

Authors: Guney E, Menche J, Vidal M, Barabasi AL

Abstract: The increasing cost of drug development together with a significant drop in the number of new drug approvals raises the need for innovative approaches for target identification and efficacy prediction. Here, we take advantage of our increasing understanding of the network-based origins of diseases to introduce a drug-disease proximity measure that quantifies the interplay between drugs targets and diseases. By correcting for the known biases of the interactome, proximity helps us uncover the therapeutic effect of drugs, as well as to distinguish palliative from effective treatments. Our analysis of 238 drugs used in 78 diseases indicates that the therapeutic effect of drugs is localized in a small network neighborhood of the disease genes and highlights efficacy issues for drugs used in Parkinson and several inflammatory disorders. Finally, network-based proximity allows us to predict novel drug-disease associations that offer unprecedented opportunities for drug repurposing and the detection of adverse effects.
Published in January 2016
READ PUBLICATION →

A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases.

Authors: Berenstein AJ, Magarinos MP, Chernomoretz A, Aguero F

Abstract: Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.
Published in January 2016
READ PUBLICATION →

High membrane permeability for melatonin.

Authors: Yu H, Dickson EJ, Jung SR, Koh DS, Hille B

Abstract: The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of approximately 1.7 microm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be "secreted" from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion.
Published in January 2016
READ PUBLICATION →

Assessment of Age-Related Changes in Pediatric Gastrointestinal Solubility.

Authors: Maharaj AR, Edginton AN, Fotaki N

Abstract: PURPOSE: Compound solubility serves as a surrogate indicator of oral biopharmaceutical performance. Between infancy and adulthood, marked compositional changes in gastrointestinal (GI) fluids occur. This study serves to assess how developmental changes in GI fluid composition affects compound solubility. METHODS: Solubility assessments were conducted in vitro using biorelevant media reflective of age-specific pediatric cohorts (i.e., neonates and infants). Previously published adult media (i.e., FaSSGF, FeSSGF, FaSSIF.v2, and FeSSIF.v2) were employed as references for pediatric media development. Investigations assessing age-specific changes in GI fluid parameters (i.e., pepsin, bile acids, pH, osmolality, etc.) were collected from the literature and served to define the composition of neonatal and infant media. Solubility assessments at 37 degrees C were conducted for seven BCS Class II compounds within the developed pediatric and reference adult media. RESULTS: For six of the seven compounds investigated, solubility fell outside an 80-125% range from adult values in at least one of the developed pediatric media. This result indicates a potential for age-related alterations in oral drug performance, especially for compounds whose absorption is delimited by solubility (i.e., BCS Class II). CONCLUSION: Developmental changes in GI fluid composition can result in relevant discrepancies in luminal compound solubility between children and adults.