Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2014
READ PUBLICATION →

Evaluation of novel Saquinavir analogs for resistance mutation compatibility and potential as an HIV-Protease inhibitor drug.

Authors: Jayaswal A, Mishra A, Mishra H, Shah K

Abstract: A fundamental issue related to therapy of HIV-1 infection is the emergence of viral mutations which severely limits the long term efficiency of the HIV-protease (HIV-PR) inhibitors. Development of new drugs is therefore continuously needed. Chemoinformatics enables to design and discover novel molecules analogous to established drugs using computational tools and databases. Saquinavir, an anti-HIV Protease drug is administered for HIV therapy. In this work chemoinformatics tools were used to design structural analogs of Saquinavir as ligand and molecular dockings at AutoDock were performed to identify potential HIV-PR inhibitors. The analogs S1 and S2 when docked with HIV-PR had binding energies of -4.08 and -3.07 kcal/mol respectively which were similar to that for Saquinavir. The molecular docking studies revealed that the changes at N2 of Saquinavir to obtain newly designed analogs S1 (having N2 benzoyl group at N1) and S2 (having 3-oxo-3phenyl propanyl group at N2) were able to dock with HIV-PR with similar affinity as that of Saquinavir. Docking studies and computationally derived pharmacodynamic and pharmacokinetic properties comparisons at ACD/I-lab establish that analog S2 has more potential to evade the problem of drug resistance mutation against HIV-1 PR subtype-A. S2 can be further developed and tested clinically as a real alternative drug for HIV-1 PR across the clades in future.
Published in 2014
READ PUBLICATION →

IIS--Integrated Interactome System: a web-based platform for the annotation, analysis and visualization of protein-metabolite-gene-drug interactions by integrating a variety of data sources and tools.

Authors: Carazzolle MF, de Carvalho LM, Slepicka HH, Vidal RO, Pereira GA, Kobarg J, Meirelles GV

Abstract: BACKGROUND: High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. RESULTS: We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. CONCLUSIONS: We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Published in 2014
READ PUBLICATION →

Targeting molecular networks for drug research.

Authors: Pinto JP, Machado RS, Xavier JM, Futschik ME

Abstract: The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects), as well as list pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs.
Published on December 29, 2014
READ PUBLICATION →

Elucidating pharmacological mechanisms of natural medicines by biclustering analysis of the gene expression profile: a case study on curcumin and Si-Wu-Tang.

Authors: Quan Y, Li B, Sun YM, Zhang HY

Abstract: Natural medicines have attracted wide attention in recent years. It is of great significance to clarify the pharmacological mechanisms of natural medicines. In prior studies, we established a method for elucidating pharmacological mechanisms of natural products contained in connectivity map (cMap), in terms of module profiles of gene expression in chemical treatments. In this study, we explore whether this methodology is applicable to dissecting the pharmacological mechanisms of natural medicines beyond the agents contained in cMap. First, the gene expression profiles of curcumin (a typical isolated natural medicine) and Si-Wu-Tang (a classic traditional Chinese medicine formula) treatments were merged with those of cMap-derived 1309 agents, respectively. Then, a biclustering analysis was performed using FABIA method to identify gene modules. The biological functions of gene modules provide preliminary insights into pharmacological mechanisms of both natural medicines. The module profile can be characterized by a binary vector, which allowed us to compare the expression profiles of natural medicines with those of cMap-derived agents. Accordingly, we predicted a series of pharmacological effects for curcumin and Si-Wu-Tang by the indications of cMap-covered drugs. Most predictions were supported by experimental observations, suggesting the potential use of this method in natural medicine dissection.
Published on December 24, 2014
READ PUBLICATION →

Insights from systems pharmacology into cardiovascular drug discovery and therapy.

Authors: Li P, Fu Y, Ru J, Huang C, Du J, Zheng C, Chen X, Li P, Lu A, Yang L, Wang Y

Abstract: BACKGROUND: Given the complex nature of cardiovascular disease (CVD), information derived from a systems-level will allow us to fully interrogate features of CVD to better understand disease pathogenesis and to identify new drug targets. RESULTS: Here, we describe a systematic assessment of the multi-layer interactions underlying cardiovascular drugs, targets, genes and disorders to reveal comprehensive insights into cardiovascular systems biology and pharmacology. We have identified 206 effect-mediating drug targets, which are modulated by 254 unique drugs, of which, 43% display activities across different protein families (sequence similarity < 30%), highlighting the fact that multitarget therapy is suitable for CVD. Although there is little overlap between cardiovascular protein targets and disease genes, the two groups have similar pleiotropy and intimate relationships in the human disease gene-gene and cellular networks, supporting their similar characteristics in disease development and response to therapy. We also characterize the relationships between different cardiovascular disorders, which reveal that they share more etiological commonalities with each other rooted in the global disease-disease networks. Furthermore, the disease modular analysis demonstrates apparent molecular connection between 227 cardiovascular disease pairs. CONCLUSIONS: All these provide important consensus as to the cause, prevention, and treatment of various CVD disorders from systems-level perspective.
Published on December 15, 2014
READ PUBLICATION →

Human structural proteome-wide characterization of Cyclosporine A targets.

Authors: Hu G, Wang K, Groenendyk J, Barakat K, Mizianty MJ, Ruan J, Michalak M, Kurgan L

Abstract: MOTIVATION: Off-target interactions of a popular immunosuppressant Cyclosporine A (CSA) with several proteins besides its molecular target, cyclophilin A, are implicated in the activation of signaling pathways that lead to numerous side effects of this drug. RESULTS: Using structural human proteome and a novel algorithm for inverse ligand binding prediction, ILbind, we determined a comprehensive set of 100+ putative partners of CSA. We empirically show that predictive quality of ILbind is better compared with other available predictors for this compound. We linked the putative target proteins, which include many new partners of CSA, with cellular functions, canonical pathways and toxicities that are typical for patients who take this drug. We used complementary approaches (molecular docking, molecular dynamics, surface plasmon resonance binding analysis and enzymatic assays) to validate and characterize three novel CSA targets: calpain 2, caspase 3 and p38 MAP kinase 14. The three targets are involved in the apoptotic pathways, are interconnected and are implicated in nephrotoxicity.
Published on December 10, 2014
READ PUBLICATION →

Influenza virus-host interactome screen as a platform for antiviral drug development.

Authors: Watanabe T, Kawakami E, Shoemaker JE, Lopes TJ, Matsuoka Y, Tomita Y, Kozuka-Hata H, Gorai T, Kuwahara T, Takeda E, Nagata A, Takano R, Kiso M, Yamashita M, Sakai-Tagawa Y, Katsura H, Nonaka N, Fujii H, Fujii K, Sugita Y, Noda T, Goto H, Fukuyama S, Watanabe S, Neumann G, Oyama M, Kitano H, Kawaoka Y

Abstract: Host factors required for viral replication are ideal drug targets because they are less likely than viral proteins to mutate under drug-mediated selective pressure. Although genome-wide screens have identified host proteins involved in influenza virus replication, limited mechanistic understanding of how these factors affect influenza has hindered potential drug development. We conducted a systematic analysis to identify and validate host factors that associate with influenza virus proteins and affect viral replication. After identifying over 1,000 host factors that coimmunoprecipitate with specific viral proteins, we generated a network of virus-host protein interactions based on the stage of the viral life cycle affected upon host factor downregulation. Using compounds that inhibit these host factors, we validated several proteins, notably Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) and JAK1, as potential antiviral drug targets. Thus, virus-host interactome screens are powerful strategies to identify targetable host factors and guide antiviral drug development.
Published on December 1, 2014
READ PUBLICATION →

A chemo-centric view of human health and disease.

Authors: Duran-Frigola M, Rossell D, Aloy P

Abstract: Efforts to compile the phenotypic effects of drugs and environmental chemicals offer the opportunity to adopt a chemo-centric view of human health that does not require detailed mechanistic information. Here we consider thousands of chemicals and analyse the relationship of their structures with adverse and therapeutic responses. Our study includes molecules related to the aetiology of 934 health-threatening conditions and used to treat 835 diseases. We first identify chemical moieties that could be independently associated with each phenotypic effect. Using these fragments, we build accurate predictors for approximately 400 clinical phenotypes, finding many privileged and liable structures. Finally, we connect two diseases if they relate to similar chemical structures. The resulting networks of human conditions are able to predict disease comorbidities, as well as identifying potential drug side effects and opportunities for drug repositioning, and show a remarkable coincidence with clinical observations.
Published in November 2014
READ PUBLICATION →

Identification of novel peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists using molecular modeling method.

Authors: Gee VM, Wong FS, Ramachandran L, Sethi G, Kumar AP, Yap CW

Abstract: Peroxisome proliferator-activated receptor-gamma (PPARgamma) plays a critical role in lipid and glucose homeostasis. It is the target of many drug discovery studies, because of its role in various disease states including diabetes and cancer. Thiazolidinediones, a synthetic class of agents that work by activation of PPARgamma, have been used extensively as insulin-sensitizers for the management of type 2 diabetes. In this study, a combination of QSAR and docking methods were utilised to perform virtual screening of more than 25 million compounds in the ZINC library. The QSAR model was developed using 1,517 compounds and it identified 42,378 potential PPARgamma agonists from the ZINC library, and 10,000 of these were selected for docking with PPARgamma based on their diversity. Several steps were used to refine the docking results, and finally 30 potentially highly active ligands were identified. Four compounds were subsequently tested for their in vitro activity, and one compound was found to have a K i values of <5 muM.
Published on November 21, 2014
READ PUBLICATION →

Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer.

Authors: Yizhak K, Gaude E, Le Devedec S, Waldman YY, Stein GY, van de Water B, Frezza C, Ruppin E

Abstract: Utilizing molecular data to derive functional physiological models tailored for specific cancer cells can facilitate the use of individually tailored therapies. To this end we present an approach termed PRIME for generating cell-specific genome-scale metabolic models (GSMMs) based on molecular and phenotypic data. We build >280 models of normal and cancer cell-lines that successfully predict metabolic phenotypes in an individual manner. We utilize this set of cell-specific models to predict drug targets that selectively inhibit cancerous but not normal cell proliferation. The top predicted target, MLYCD, is experimentally validated and the metabolic effects of MLYCD depletion investigated. Furthermore, we tested cell-specific predicted responses to the inhibition of metabolic enzymes, and successfully inferred the prognosis of cancer patients based on their PRIME-derived individual GSMMs. These results lay a computational basis and a counterpart experimental proof of concept for future personalized metabolic modeling applications, enhancing the search for novel selective anticancer therapies.