Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on July 2, 2012
READ PUBLICATION →

Genes2FANs: connecting genes through functional association networks.

Authors: Dannenfelser R, Clark NR, Ma'ayan A

Abstract: BACKGROUND: Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. RESULTS: Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user's PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. CONCLUSIONS: Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in many cancers are mostly connected through PPIs whereas other complex diseases, such as autism and type-2 diabetes, are mostly connected through FANs without PPIs, can guide better strategies for disease gene discovery. Genes2FANs is available at: http://actin.pharm.mssm.edu/genes2FANs.
Published in June 2012
READ PUBLICATION →

Homology modeling and docking analyses of M. leprae Mur ligases reveals the common binding residues for structure based drug designing to eradicate leprosy.

Authors: Shanmugam A, Natarajan J

Abstract: Multi drug resistance capacity for Mycobacterium leprae (MDR-Mle) demands the profound need for developing new anti-leprosy drugs. Since most of the drugs target a single enzyme, mutation in the active site renders the antibiotic ineffective. However, structural and mechanistic information on essential bacterial enzymes in a pathway could lead to the development of antibiotics that targets multiple enzymes. Peptidoglycan is an important component of the cell wall of M. leprae. The biosynthesis of bacterial peptidoglycan represents important targets for the development of new antibacterial drugs. Biosynthesis of peptidoglycan is a multi-step process that involves four key Mur ligase enzymes: MurC (EC:6.3.2.8), MurD (EC:6.3.2.9), MurE (EC:6.3.2.13) and MurF (EC:6.3.2.10). Hence in our work, we modeled the three-dimensional structure of the above Mur ligases using homology modeling method and analyzed its common binding features. The residues playing an important role in the catalytic activity of each of the Mur enzymes were predicted by docking these Mur ligases with their substrates and ATP. The conserved sequence motifs significant for ATP binding were predicted as the probable residues for structure based drug designing. Overall, the study was successful in listing significant and common binding residues of Mur enzymes in peptidoglycan pathway for multi targeted therapy.
Published in June 2012
READ PUBLICATION →

KB-Rank: efficient protein structure and functional annotation identification via text query.

Authors: Julfayev ES, McLaughlin RJ, Tao YP, McLaughlin WA

Abstract: The KB-Rank tool was developed to help determine the functions of proteins. A user provides text query and protein structures are retrieved together with their functional annotation categories. Structures and annotation categories are ranked according to their estimated relevance to the queried text. The algorithm for ranking first retrieves matches between the query text and the text fields associated with the structures. The structures are next ordered by their relative content of annotations that are found to be prevalent across all the structures retrieved. An interactive web interface was implemented to navigate and interpret the relevance of the structures and annotation categories retrieved by a given search. The aim of the KB-Rank tool is to provide a means to quickly identify protein structures of interest and the annotations most relevant to the queries posed by a user. Informational and navigational searches regarding disease topics are described to illustrate the tool's utilities. The tool is available at the URL http://protein.tcmedc.org/KB-Rank.
Published in June 2012
READ PUBLICATION →

Novel data-mining methodologies for adverse drug event discovery and analysis.

Authors: Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C

Abstract: An important goal of the health system is to identify new adverse drug events (ADEs) in the postapproval period. Datamining methods that can transform data into meaningful knowledge to inform patient safety have proven essential for this purpose. New opportunities have emerged to harness data sources that have not been used within the traditional framework. This article provides an overview of recent methodological innovations and data sources used to support ADE discovery and analysis.
Published in June 2012
READ PUBLICATION →

Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs.

Authors: Liu M, Wu Y, Chen Y, Sun J, Zhao Z, Chen XW, Matheny ME, Xu H

Abstract: OBJECTIVE: Adverse drug reaction (ADR) is one of the major causes of failure in drug development. Severe ADRs that go undetected until the post-marketing phase of a drug often lead to patient morbidity. Accurate prediction of potential ADRs is required in the entire life cycle of a drug, including early stages of drug design, different phases of clinical trials, and post-marketing surveillance. METHODS: Many studies have utilized either chemical structures or molecular pathways of the drugs to predict ADRs. Here, the authors propose a machine-learning-based approach for ADR prediction by integrating the phenotypic characteristics of a drug, including indications and other known ADRs, with the drug's chemical structures and biological properties, including protein targets and pathway information. A large-scale study was conducted to predict 1385 known ADRs of 832 approved drugs, and five machine-learning algorithms for this task were compared. RESULTS: This evaluation, based on a fivefold cross-validation, showed that the support vector machine algorithm outperformed the others. Of the three types of information, phenotypic data were the most informative for ADR prediction. When biological and phenotypic features were added to the baseline chemical information, the ADR prediction model achieved significant improvements in area under the curve (from 0.9054 to 0.9524), precision (from 43.37% to 66.17%), and recall (from 49.25% to 63.06%). Most importantly, the proposed model successfully predicted the ADRs associated with withdrawal of rofecoxib and cerivastatin. CONCLUSION: The results suggest that phenotypic information on drugs is valuable for ADR prediction. Moreover, they demonstrate that different models that combine chemical, biological, or phenotypic information can be built from approved drugs, and they have the potential to detect clinically important ADRs in both preclinical and post-marketing phases.
Published in June 2012
READ PUBLICATION →

Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening?

Authors: Tang H, Wang XS, Hsieh JH, Tropsha A

Abstract: Recent highly expected structural characterizations of agonist-bound and antagonist-bound beta-2 adrenoreceptor (beta2AR) by X-ray crystallography have been widely regarded as critical advances to enable more effective structure-based discovery of GPCRs ligands. It appears that this very important development may have undermined many previous efforts to develop 3D theoretical models of GPCRs. To address this question directly, we have compared several historical beta2AR models versus the inactive state and nanobody-stabilized active state of beta2AR crystal structures in terms of their structural similarity and effectiveness of use in virtual screening for beta2AR specific agonists and antagonists. Theoretical models, incluing both homology and de novo types, were collected from five different groups who have published extensively in the field of GPCRs modeling. All models were built before X-ray structures became available. In general, beta2AR theoretical models differ significantly from the crystal structure in terms of TMH definition and the global packing. Nevertheless, surprisingly, several models afforded hit rates resulting from virtual screening of large chemical library enriched by known beta2AR ligands that exceeded those using X-ray structures. The hit rates were particularly higher for agonists. Furthemore, the screening performance of models is associated with local structural quality, such as the RMSDs for binding pocket residues and the ability to capture accurately, most if not all critical protein/ligand interactions. These results suggest that carefully built models of GPCRs could capture critical chemical and structural features of the binding pocket, and thus may be even more useful for practical structure-based drug discovery than X-ray structures.
Published in June 2012
READ PUBLICATION →

Identification of pharmacological targets in amyotrophic lateral sclerosis through genomic analysis of deregulated genes and pathways.

Authors: Paratore S, Pezzino S, Cavallaro S

Abstract: Amyotrophic Lateral Sclerosis (ALS) is a progressive and disabling neurodegenerative disorder characterized by upper and lower motor neuron loss, leading to respiratory insufficiency and death after 3-5 years. Riluzole is currently the only FDA approved drug for ALS, but it has only modest effects on survival. The majority of ALS cases are sporadic and probably associated to a multifactorial etiology. With the completion of genome sequencing in humans and model organisms, together with the advent of DNA microarray technology, the transcriptional cascades and networks underlying neurodegeneration in ALS are being elucidated providing new potential pharmacological targets. The main challenge now is the effective screening of the myriad of targets to identify those with the most therapeutic utility. The present review will illustrate how the identification, prioritization and validation of preclinical therapeutics can be achieved through genomic analysis of critical pathways and networks deregulated in ALS pathology.
Published in June 2012
READ PUBLICATION →

Possible links between sickle cell crisis and pentavalent antimony.

Authors: Garcerant D, Rubiano L, Blanco V, Martinez J, Baker NC, Craft N

Abstract: For over 60 years, pentavalent antimony (Sb(v)) has been the first-line treatment of leishmaniasis. Sickle cell anemia is a disease caused by a defect in red blood cells, which among other things can cause vasooclusive crisis. We report the case of a 6-year-old child with leishmaniasis who during treatment with meglumine antimoniate developed a sickle cell crisis (SCC). No previous reports describing the relationship between antimonial drugs and sickle cell disease were found. Reviews of both the pathophysiology of SCC and the mechanism of action of Sb(v) revealed that a common pathway (glutathione) may have resulted in the SCC. ChemoText, a novel database created to predict chemical-protein-disease interactions, was used to perform a more expansive and systematic review that was able to support the association between glutathione, Sb(v), and SCC. Although suggestive evidence to support the hypothesis, additional research at the bench would be needed to prove Sb(v) caused the SCC.
Published on June 28, 2012
READ PUBLICATION →

Life beyond kinases: structure-based discovery of sorafenib as nanomolar antagonist of 5-HT receptors.

Authors: Lin X, Huang XP, Chen G, Whaley R, Peng S, Wang Y, Zhang G, Wang SX, Wang S, Roth BL, Huang N

Abstract: Of great interest in recent years has been computationally predicting the novel polypharmacology of drug molecules. Here, we applied an "induced-fit" protocol to improve the homology models of 5-HT(2A) receptor, and we assessed the quality of these models in retrospective virtual screening. Subsequently, we computationally screened the FDA approved drug molecules against the best induced-fit 5-HT(2A) models and chose six top scoring hits for experimental assays. Surprisingly, one well-known kinase inhibitor, sorafenib, has shown unexpected promiscuous 5-HTRs binding affinities, K(i) = 1959, 56, and 417 nM against 5-HT(2A), 5-HT(2B), and 5-HT(2C), respectively. Our preliminary SAR exploration supports the predicted binding mode and further suggests sorafenib to be a novel lead compound for 5HTR ligand discovery. Although it has been well-known that sorafenib produces anticancer effects through targeting multiple kinases, carefully designed experimental studies are desirable to fully understand whether its "off-target" 5-HTR binding activities contribute to its therapeutic efficacy or otherwise undesirable side effects.
Published on June 28, 2012
READ PUBLICATION →

Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers.

Authors: Hajjo R, Setola V, Roth BL, Tropsha A

Abstract: We have devised a chemocentric informatics methodology for drug discovery integrating independent approaches to mining biomolecular databases. As a proof of concept, we have searched for novel putative cognition enhancers. First, we generated Quantitative Structure-Activity Relationship (QSAR) models of compounds binding to 5-hydroxytryptamine-6 receptor (5-HT(6)R), a known target for cognition enhancers, and employed these models for virtual screening to identify putative 5-HT(6)R actives. Second, we queried chemogenomics data from the Connectivity Map ( http://www.broad.mit.edu/cmap/ ) with the gene expression profile signatures of Alzheimer's disease patients to identify compounds putatively linked to the disease. Thirteen common hits were tested in 5-HT(6)R radioligand binding assays and ten were confirmed as actives. Four of them were known selective estrogen receptor modulators that were never reported as 5-HT(6)R ligands. Furthermore, nine of the confirmed actives were reported elsewhere to have memory-enhancing effects. The approaches discussed herein can be used broadly to identify novel drug-target-disease associations.