Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on April 5, 2021
READ PUBLICATION →

Common genetic variants and pathways in diabetes and associated complications and vulnerability of populations with different ethnic origins.

Authors: Shoily SS, Ahsan T, Fatema K, Sajib AA

Abstract: Diabetes mellitus is a complex and heterogeneous metabolic disorder which is often pre- or post-existent with complications such as cardiovascular disease, hypertension, inflammation, chronic kidney disease, diabetic retino- and nephropathies. However, the frequencies of these co-morbidities vary among individuals and across populations. It is, therefore, not unlikely that certain genetic variants might commonly contribute to these conditions. Here, we identified four single nucleotide polymorphisms (rs5186, rs1800795, rs1799983 and rs1800629 in AGTR1, IL6, NOS3 and TNFA genes, respectively) to be commonly associated with each of these conditions. We explored their possible interplay in diabetes and associated complications. The variant allele and haplotype frequencies at these polymorphic loci vary among different super-populations (African, European, admixed Americans, South and East Asians). The variant alleles are particularly highly prevalent in different European and admixed American populations. Differential distribution of these variants in different ethnic groups suggests that certain drugs might be more effective in selective populations rather than all. Therefore, population specific genetic architectures should be considered before considering a drug for these conditions.
Published on April 2, 2021
READ PUBLICATION →

A COVID-19 Drug Repurposing Strategy through Quantitative Homological Similarities Using a Topological Data Analysis-Based Framework.

Authors: Perez-Moraga R, Fores-Martos J, Suay-Garcia B, Duval JL, Falco A, Climent J

Abstract: Since its emergence in March 2020, the SARS-CoV-2 global pandemic has produced more than 116 million cases and 2.5 million deaths worldwide. Despite the enormous efforts carried out by the scientific community, no effective treatments have been developed to date. We applied a novel computational pipeline aimed to accelerate the process of identifying drug repurposing candidates which allows us to compare three-dimensional protein structures. Its use in conjunction with two in silico validation strategies (molecular docking and transcriptomic analyses) allowed us to identify a set of potential drug repurposing candidates targeting three viral proteins (3CL viral protease, NSP15 endoribonuclease, and NSP12 RNA-dependent RNA polymerase), which included rutin, dexamethasone, and vemurafenib. This is the first time that a topological data analysis (TDA)-based strategy has been used to compare a massive number of protein structures with the final objective of performing drug repurposing to treat SARS-CoV-2 infection.
Published on April 2, 2021
READ PUBLICATION →

An Update on MRMAssayDB: A Comprehensive Resource for Targeted Proteomics Assays in the Community.

Authors: Bhowmick P, Roome S, Borchers CH, Goodlett DR, Mohammed Y

Abstract: Precise multiplexed quantification of proteins in biological samples can be achieved by targeted proteomics using multiple or parallel reaction monitoring (MRM/PRM). Combined with internal standards, the method achieves very good repeatability and reproducibility enabling excellent protein quantification and allowing longitudinal and cohort studies. A laborious part of performing such experiments lies in the preparation steps dedicated to the development and validation of individual protein assays. Several public repositories host information on targeted proteomics assays, including NCI's Clinical Proteomic Tumor Analysis Consortium assay portals, PeptideAtlas SRM Experiment Library, SRMAtlas, PanoramaWeb, and PeptideTracker, with all offering varying levels of details. We introduced MRMAssayDB in 2018 as an integrated resource for targeted proteomics assays. The Web-based application maps and links the assays from the repositories, includes comprehensive up-to-date protein and sequence annotations, and provides multiple visualization options on the peptide and protein level. We have extended MRMAssayDB with more assays and extensive annotations. Currently it contains >828000 assays covering >51000 proteins from 94 organisms, of which >17000 proteins are present in >2400 biological pathways, and >48000 mapping to >21000 Gene Ontology terms. This is an increase of about four times the number of assays since introduction. We have expanded annotations of interaction, biological pathways, and disease associations. A newly added visualization module for coupled molecular structural annotation browsing allows the user to interactively examine peptide sequence and any known PTMs and disease mutations, and map all to available protein 3D structures. Because of its integrative approach, MRMAssayDB enables a holistic view of suitable proteotypic peptides and commonly used transitions in empirical data. Availability: http://mrmassaydb.proteincentre.com.
Published on April 2, 2021
READ PUBLICATION →

Multicriteria Optimization of Phenolic Compounds Capture from a Sunflower Protein Isolate Production Process by-Product by Adsorption Column and Assessment of Their Antioxidant and Anti-Inflammatory Effects.

Authors: Le TT, Ropars A, Aymes A, Frippiat JP, Kapel R

Abstract: The aim of this study was to valorize liquid effluent from the sunflower protein isolate process by extracting phenolic compounds it contains. To do so, XAD7 resin was used. A multicriteria optimization methodology based on design of experiments showed the optimal conditions were adsorption flow rate of 15 BV/h at pH 2.7, a desorption flow rate at 120 BV/h with ethanol/water 50% (v/v). The best trade-off between purity and recovery yields resulted in the production of a fraction containing 76.05% of chlorogenic acid (CGA) whose biological properties were evaluated. DPPH and ABTS tests showed that this fraction had a higher radical scavenging capacity than vitamin C. In vitro assays have shown that this fraction, when used at a concentration corresponding to 50 or 100 microM of CGA, does not present any cytotoxicity on human THP-1 cells differentiated into macrophages. In addition, this fraction when added prior to the inflammatory stimulus (LPS) can reduce tumor necrosis factor-alpha (TNF-alpha) production by 22%, thereby highlighting its protective properties against future inflammation.
Published on April 1, 2021
READ PUBLICATION →

Malignant Pleural Mesothelioma Interactome with 364 Novel Protein-Protein Interactions.

Authors: Karunakaran KB, Yanamala N, Boyce G, Becich MJ, Ganapathiraju MK

Abstract: Malignant pleural mesothelioma (MPM) is an aggressive cancer affecting the outer lining of the lung, with a median survival of less than one year. We constructed an 'MPM interactome' with over 300 computationally predicted protein-protein interactions (PPIs) and over 2400 known PPIs of 62 literature-curated genes whose activity affects MPM. Known PPIs of the 62 MPM associated genes were derived from Biological General Repository for Interaction Datasets (BioGRID) and Human Protein Reference Database (HPRD). Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest model. We validated five novel predicted PPIs experimentally. The interactome is significantly enriched with genes differentially ex-pressed in MPM tumors compared with normal pleura and with other thoracic tumors, genes whose high expression has been correlated with unfavorable prognosis in lung cancer, genes differentially expressed on crocidolite exposure, and exosome-derived proteins identified from malignant mesothelioma cell lines. 28 of the interactors of MPM proteins are targets of 147 U.S. Food and Drug Administration (FDA)-approved drugs. By comparing disease-associated versus drug-induced differential expression profiles, we identified five potentially repurposable drugs, namely cabazitaxel, primaquine, pyrimethamine, trimethoprim and gliclazide. Preclinical studies may be con-ducted in vitro to validate these computational results. Interactome analysis of disease-associated genes is a powerful approach with high translational impact. It shows how MPM-associated genes identified by various high throughput studies are functionally linked, leading to clinically translatable results such as repurposed drugs. The PPIs are made available on a webserver with interactive user interface, visualization and advanced search capabilities.
Published on April 1, 2021
READ PUBLICATION →

Discovery of potent Covid-19 main protease inhibitors using integrated drug-repurposing strategy.

Authors: T MK, K R, James N, V S, K R

Abstract: The emergence and rapid spreading of novel SARS-CoV-2 across the globe represent an imminent threat to public health. Novel antiviral therapies are urgently needed to overcome this pandemic. Given the significant role of the main protease of Covid-19 for virus replication, we performed a drug-repurposing study using the recently deposited main protease structure, 6LU7. For instance, pharmacophore- and e-pharmacophore-based hypotheses such as AARRH and AARR, respectively, were developed using available small molecule inhibitors and utilized in the screening of the DrugBank repository. Further, a hierarchical docking protocol was implemented with the support of the Glide algorithm. The resultant compounds were then examined for their binding free energy against the main protease of Covid-19 by means of the Prime-MM/GBSA algorithm. Most importantly, the machine learning-based AutoQSAR algorithm was used to predict the antiviral activities of resultant compounds. The hit molecules were also examined for their drug-likeness and toxicity parameters through the QikProp algorithm. Finally, the hit compounds activity against the main protease was validated using molecular dynamics simulation studies. Overall, the present analysis yielded two potential inhibitors (DB02986 and DB08573) that are predicted to bind with the main protease of Covid-19 better than currently used drug molecules such as N3 (cocrystallized native ligand), lopinavir, and ritonavir.
Published on April 1, 2021
READ PUBLICATION →

Systematic prediction of drug resistance caused by transporter genes in cancer cells.

Authors: Shen Y, Yan Z

Abstract: To study the drug resistance problem caused by transporters, we leveraged multiple large-scale public data sets of drug sensitivity, cell line genetic and transcriptional profiles, and gene silencing experiments. Through systematic integration of these data sets, we built various machine learning models to predict the difference between cell viability upon drug treatment and the silencing of its target across the same cell lines. More than 50% of the models built with the same data set or with independent data sets successfully predicted the testing set with significant correlation to the ground truth data. Features selected by our models were also significantly enriched in known drug transporters annotated in DrugBank for more than 60% of the models. Novel drug-transporter interactions were discovered, such as lapatinib and gefitinib with ABCA1, olaparib and NVPADW742 with ABCC3, and gefitinib and AZ628 with SLC4A4. Furthermore, we identified ABCC3, SLC12A7, SLCO4A1, SERPINA1, and SLC22A3 as potential transporters for erlotinib, three of which are also significantly more highly expressed in patients who were resistant to therapy in a clinical trial.
Published in March 2021
READ PUBLICATION →

Functional annotation of lung cancerassociated genetic variants by cell typespecific epigenome and long-range chromatin interactome.

Authors: Lee AJ, Jung I

Abstract: Functional interpretation of noncoding genetic variants associated with complex human diseases and traits remains a challenge. In an effort to enhance our understanding of common germline variants associated with lung cancer, we categorize regulatory elements based on eight major cell types of human lung tissue. Our results show that 21.68% of lung cancerassociated risk variants are linked to noncoding regulatory elements, nearly half of which are cell typespecific. Integrative analysis of high-resolution long-range chromatin interactome maps and single-cell RNA-sequencing data of lung tumors uncovers number of putative target genes of these variants and functionally relevant cell types, which display a potential biological link to cancer susceptibility. The present study greatly expands the scope of functional annotation of lung cancerassociated genetic risk factors and dictates probable cell types involved in lung carcinogenesis.
Published in March 2021
READ PUBLICATION →

Biological impact of mutually exclusive exon switching.

Authors: Lam SD, Babu MM, Lees J, Orengo CA

Abstract: Alternative splicing can expand the diversity of proteomes. Homologous mutually exclusive exons (MXEs) originate from the same ancestral exon and result in polypeptides with similar structural properties but altered sequence. Why would some genes switch homologous exons and what are their biological impact? Here, we analyse the extent of sequence, structural and functional variability in MXEs and report the first large scale, structure-based analysis of the biological impact of MXE events from different genomes. MXE-specific residues tend to map to single domains, are highly enriched in surface exposed residues and cluster at or near protein functional sites. Thus, MXE events are likely to maintain the protein fold, but alter specificity and selectivity of protein function. This comprehensive resource of MXE events and their annotations is available at: http://gene3d.biochem.ucl.ac.uk/mxemod/. These findings highlight how small, but significant changes at critical positions on a protein surface are exploited in evolution to alter function.
Published in March 2021
READ PUBLICATION →

A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing.

Authors: Pham TH, Qiu Y, Zeng J, Xie L, Zhang P

Abstract: Phenotype-based compound screening has advantages over target-based drug discovery, but is unscalable and lacks understanding of mechanism. Chemical-induced gene expression profile provides a mechanistic signature of phenotypic response. However, the use of such data is limited by their sparseness, unreliability, and relatively low throughput. Few methods can perform phenotype-based de novo chemical compound screening. Here, we propose a mechanism-driven neural network-based method DeepCE, which utilizes graph neural network and multi-head attention mechanism to model chemical substructure-gene and gene-gene associations, for predicting the differential gene expression profile perturbed by de novo chemicals. Moreover, we propose a novel data augmentation method which extracts useful information from unreliable experiments in L1000 dataset. The experimental results show that DeepCE achieves superior performances to state-of-the-art methods. The effectiveness of gene expression profiles generated from DeepCE is further supported by comparing them with observed data for downstream classification tasks. To demonstrate the value of DeepCE, we apply it to drug repurposing of COVID-19, and generate novel lead compounds consistent with clinical evidence. Thus, DeepCE provides a potentially powerful framework for robust predictive modeling by utilizing noisy omics data and screening novel chemicals for the modulation of a systemic response to disease.