Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2019
READ PUBLICATION →

An analog of glibenclamide selectively enhances autophagic degradation of misfolded alpha1-antitrypsin Z.

Authors: Wang Y, Cobanoglu MC, Li J, Hidvegi T, Hale P, Ewing M, Chu AS, Gong Z, Muzumdar R, Pak SC, Silverman GA, Bahar I, Perlmutter DH

Abstract: The classical form of alpha1-antitrypsin deficiency (ATD) is characterized by intracellular accumulation of the misfolded variant alpha1-antitrypsin Z (ATZ) and severe liver disease in some of the affected individuals. In this study, we investigated the possibility of discovering novel therapeutic agents that would reduce ATZ accumulation by interrogating a C. elegans model of ATD with high-content genome-wide RNAi screening and computational systems pharmacology strategies. The RNAi screening was utilized to identify genes that modify the intracellular accumulation of ATZ and a novel computational pipeline was developed to make high confidence predictions on repurposable drugs. This approach identified glibenclamide (GLB), a sulfonylurea drug that has been used broadly in clinical medicine as an oral hypoglycemic agent. Here we show that GLB promotes autophagic degradation of misfolded ATZ in mammalian cell line models of ATD. Furthermore, an analog of GLB reduces hepatic ATZ accumulation and hepatic fibrosis in a mouse model in vivo without affecting blood glucose or insulin levels. These results provide support for a drug discovery strategy using simple organisms as human disease models combined with genetic and computational screening methods. They also show that GLB and/or at least one of its analogs can be immediately tested to arrest the progression of human ATD liver disease.
Published on December 29, 2019
READ PUBLICATION →

Network Pharmacology Approach Reveals the Potential Immune Function Activation and Tumor Cell Apoptosis Promotion of Xia Qi Decoction in Lung Cancer.

Authors: Zhang S, Wang Y

Abstract: As the leading cause of cancer death worldwide, lung cancer (LC) has seriously affected human health and longevity. Chinese medicine is a complex system guided by traditional Chinese medicine theories (TCM). Nowadays, the clinical application of TCM for LC patients has become the focus for its effectiveness and security. In this paper, we will analyze and study the mechanism of Xia Qi Decoction (XQD) in the treatment of LC. The results collectively show that XQD could act on 41 therapeutic targets of LC. At the same time, 8 of 41 targets were significantly expressed in immune tissues and cells by activating CD8+T cells to promote apoptosis of cancer cells. It reveals the molecular mechanism of XQD in the treatment of LC from the perspective of network pharmacology. In addition, in the treatment of LC, XQD can activate (up-regulate) the function of immune cells, promote the apoptosis of tumor cells, and have an active anti-tumor immune effect. In conclusion, this study reveals the unique advantages of traditional Chinese medicine in the treatment of cancer, in reinforcing the healthy qi and eliminating the pathogenic factors. More research, however, is needed to verify the potential mechanisms.
Published on December 24, 2019
READ PUBLICATION →

Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks.

Authors: Hu S, Zhang C, Chen P, Gu P, Zhang J, Wang B

Abstract: BACKGROUND: Accurate identification of potential interactions between drugs and protein targets is a critical step to accelerate drug discovery. Despite many relative experimental researches have been done in the past decades, detecting drug-target interactions (DTIs) remains to be extremely resource-intensive and time-consuming. Therefore, many computational approaches have been developed for predicting drug-target associations on a large scale. RESULTS: In this paper, we proposed an deep learning-based method to predict DTIs only using the information of drug structures and protein sequences. The final results showed that our method can achieve good performance with the accuracies up to 92.0%, 90.0%, 92.0% and 90.7% for the target families of enzymes, ion channels, GPCRs and nuclear receptors of our created dataset, respectively. Another dataset derived from DrugBank was used to further assess the generalization of the model, which yielded an accuracy of 0.9015 and an AUC value of 0.9557. CONCLUSION: It was elucidated that our model shows improved performance in comparison with other state-of-the-art computational methods on the common benchmark datasets. Experimental results demonstrated that our model successfully extracted more nuanced yet useful features, and therefore can be used as a practical tool to discover new drugs. AVAILABILITY: http://deeplearner.ahu.edu.cn/web/CnnDTI.htm.
Published on December 24, 2019
READ PUBLICATION →

DDIGIP: predicting drug-drug interactions based on Gaussian interaction profile kernels.

Authors: Yan C, Duan G, Pan Y, Wu FX, Wang J

Abstract: BACKGROUND: A drug-drug interaction (DDI) is defined as a drug effect modified by another drug, which is very common in treating complex diseases such as cancer. Many studies have evidenced that some DDIs could be an increase or a decrease of the drug effect. However, the adverse DDIs maybe result in severe morbidity and even morality of patients, which also cause some drugs to withdraw from the market. As the multi-drug treatment becomes more and more common, identifying the potential DDIs has become the key issue in drug development and disease treatment. However, traditional biological experimental methods, including in vitro and vivo, are very time-consuming and expensive to validate new DDIs. With the development of high-throughput sequencing technology, many pharmaceutical studies and various bioinformatics data provide unprecedented opportunities to study DDIs. RESULT: In this study, we propose a method to predict new DDIs, namely DDIGIP, which is based on Gaussian Interaction Profile (GIP) kernel on the drug-drug interaction profiles and the Regularized Least Squares (RLS) classifier. In addition, we also use the k-nearest neighbors (KNN) to calculate the initial relational score in the presence of new drugs via the chemical, biological, phenotypic data of drugs. We compare the prediction performance of DDIGIP with other competing methods via the 5-fold cross validation, 10-cross validation and de novo drug validation. CONLUSION: In 5-fold cross validation and 10-cross validation, DDRGIP method achieves the area under the ROC curve (AUC) of 0.9600 and 0.9636 which are better than state-of-the-art method (L1 Classifier ensemble method) of 0.9570 and 0.9599. Furthermore, for new drugs, the AUC value of DDIGIP in de novo drug validation reaches 0.9262 which also outperforms the other state-of-the-art method (Weighted average ensemble method) of 0.9073. Case studies and these results demonstrate that DDRGIP is an effective method to predict DDIs while being beneficial to drug development and disease treatment.
Published on December 20, 2019
READ PUBLICATION →

R-BIND: An Interactive Database for Exploring and Developing RNA-Targeted Chemical Probes.

Authors: Morgan BS, Sanaba BG, Donlic A, Karloff DB, Forte JE, Zhang Y, Hargrove AE

Abstract: While the opportunities available for targeting RNA with small molecules have been widely appreciated, the challenges associated with achieving specific RNA recognition in biological systems have hindered progress and prevented many researchers from entering the field. To facilitate the discovery of RNA-targeted chemical probes and their subsequent applications, we curated the RNA-targeted BIoactive ligaNd Database (R-BIND). This collection contains an array of information on reported chemical probes that target non-rRNA and have biological activity, and analysis has led to the discovery of RNA-privileged properties. Herein, we developed an online platform to make this information freely available to the community, offering search options, a suite of tools for probe development, and an updated R-BIND data set with detailed experimental information for each probe. We repeated the previous cheminformatics analysis on the updated R-BIND list and found that the distinguishing physicochemical, structural, and spatial properties remained unchanged, despite an almost 50% increase in the database size. Further, we developed several user-friendly tools, including queries based on cheminformatic parameters, experimental details, functional groups, and substructures. In addition, a nearest neighbor algorithm can assess the similarity of user-uploaded molecules to R-BIND ligands. These tools and resources can be used to design small molecule libraries, optimize lead ligands, or select targets, probes, assays, and control experiments. Chemical probes are critical to the study and discovery of novel functions for RNA, and we expect this resource to greatly assist researchers in exploring and developing successful RNA-targeted probes.
Published on December 20, 2019
READ PUBLICATION →

Biological representation of chemicals using latent target interaction profile.

Authors: Ayed M, Lim H, Xie L

Abstract: BACKGROUND: Computational prediction of a phenotypic response upon the chemical perturbation on a biological system plays an important role in drug discovery, and many other applications. Chemical fingerprints are a widely used feature to build machine learning models. However, the fingerprints that are derived from chemical structures ignore the biological context, thus, they suffer from several problems such as the activity cliff and curse of dimensionality. Fundamentally, the chemical modulation of biological activities is a multi-scale process. It is the genome-wide chemical-target interactions that modulate chemical phenotypic responses. Thus, the genome-scale chemical-target interaction profile will more directly correlate with in vitro and in vivo activities than the chemical structure. Nevertheless, the scope of direct application of the chemical-target interaction profile is limited due to the severe incompleteness, biasness, and noisiness of bioassay data. RESULTS: To address the aforementioned problems, we developed a novel chemical representation method: Latent Target Interaction Profile (LTIP). LTIP embeds chemicals into a low dimensional continuous latent space that represents genome-scale chemical-target interactions. Subsequently LTIP can be used as a feature to build machine learning models. Using the drug sensitivity of cancer cell lines as a benchmark, we have shown that the LTIP robustly outperforms chemical fingerprints regardless of machine learning algorithms. Moreover, the LTIP is complementary with the chemical fingerprints. It is possible for us to combine LTIP with other fingerprints to further improve the performance of bioactivity prediction. CONCLUSIONS: Our results demonstrate the potential of LTIP in particular and multi-scale modeling in general in predictive modeling of chemical modulation of biological activities.
Published on December 18, 2019
READ PUBLICATION →

Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings.

Authors: Celebi R, Uyar H, Yasar E, Gumus O, Dikenelli O, Dumontier M

Abstract: BACKGROUND: Current approaches to identifying drug-drug interactions (DDIs), include safety studies during drug development and post-marketing surveillance after approval, offer important opportunities to identify potential safety issues, but are unable to provide complete set of all possible DDIs. Thus, the drug discovery researchers and healthcare professionals might not be fully aware of potentially dangerous DDIs. Predicting potential drug-drug interaction helps reduce unanticipated drug interactions and drug development costs and optimizes the drug design process. Methods for prediction of DDIs have the tendency to report high accuracy but still have little impact on translational research due to systematic biases induced by networked/paired data. In this work, we aimed to present realistic evaluation settings to predict DDIs using knowledge graph embeddings. We propose a simple disjoint cross-validation scheme to evaluate drug-drug interaction predictions for the scenarios where the drugs have no known DDIs. RESULTS: We designed different evaluation settings to accurately assess the performance for predicting DDIs. The settings for disjoint cross-validation produced lower performance scores, as expected, but still were good at predicting the drug interactions. We have applied Logistic Regression, Naive Bayes and Random Forest on DrugBank knowledge graph with the 10-fold traditional cross validation using RDF2Vec, TransE and TransD. RDF2Vec with Skip-Gram generally surpasses other embedding methods. We also tested RDF2Vec on various drug knowledge graphs such as DrugBank, PharmGKB and KEGG to predict unknown drug-drug interactions. The performance was not enhanced significantly when an integrated knowledge graph including these three datasets was used. CONCLUSION: We showed that the knowledge embeddings are powerful predictors and comparable to current state-of-the-art methods for inferring new DDIs. We addressed the evaluation biases by introducing drug-wise and pairwise disjoint test classes. Although the performance scores for drug-wise and pairwise disjoint seem to be low, the results can be considered to be realistic in predicting the interactions for drugs with limited interaction information.
Published on December 18, 2019
READ PUBLICATION →

A network pharmacology approach to reveal the protective mechanism of Salvia miltiorrhiza-Dalbergia odorifera coupled-herbs on coronary heart disease.

Authors: Li F, Duan J, Zhao M, Huang S, Mu F, Su J, Liu K, Pan Y, Lu X, Li J, Wei P, Xi M, Wen A

Abstract: Salvia miltiorrhiza-Dalbergia odorifera coupled-herbs (SMDOCH) has been used to treat coronary heart disease (CHD) for thousands of years, but its unclear bioactive components and mechanisms greatly limit its clinical application. In this study, for the first time, we used network pharmacology to elucidate the mechanisms of action of SMDOCH on CHD. We collected 270 SMDOCH-related targets from 74 bioactive components and 375 CHD-related targets, with 58 overlapping common targets. Next, we performed enrichment analysis for common-target network and protein-protein interaction (PPI) network. The results showed that SMDOCH affected CHD mainly through 10 significant signaling pathways in three biological processes: 'vascular endothelial function regulation', 'inflammatory response', and 'lipid metabolism'. Six pathways belonged to the 'vascular endothelial function regulation' model, which primarily regulated hormone (renin, angiotensin, oestrogen) activity, and included three key upstream pathways that influence vascular endothelial function, namely KEGG:04933, KEGG:05418, and KEGG:04066. Three pathways, namely KEGG:04668, KEGG:04064, and KEGG:04620, belonged to the 'inflammatory response' model. One pathway (KEGG:04920) belonged to the 'lipid metabolism' model. To some extent, this study revealed the potential bioactive components and pharmacological mechanisms of SMDOCH on CHD, and provided a new direction for the development of new drugs for the treatment of CHD.
Published on December 15, 2019
READ PUBLICATION →

deepDR: a network-based deep learning approach to in silico drug repositioning.

Authors: Zeng X, Zhu S, Liu X, Zhou Y, Nussinov R, Cheng F

Abstract: MOTIVATION: Traditional drug discovery and development are often time-consuming and high risk. Repurposing/repositioning of approved drugs offers a relatively low-cost and high-efficiency approach toward rapid development of efficacious treatments. The emergence of large-scale, heterogeneous biological networks has offered unprecedented opportunities for developing in silico drug repositioning approaches. However, capturing highly non-linear, heterogeneous network structures by most existing approaches for drug repositioning has been challenging. RESULTS: In this study, we developed a network-based deep-learning approach, termed deepDR, for in silico drug repurposing by integrating 10 networks: one drug-disease, one drug-side-effect, one drug-target and seven drug-drug networks. Specifically, deepDR learns high-level features of drugs from the heterogeneous networks by a multi-modal deep autoencoder. Then the learned low-dimensional representation of drugs together with clinically reported drug-disease pairs are encoded and decoded collectively via a variational autoencoder to infer candidates for approved drugs for which they were not originally approved. We found that deepDR revealed high performance [the area under receiver operating characteristic curve (AUROC) = 0.908], outperforming conventional network-based or machine learning-based approaches. Importantly, deepDR-predicted drug-disease associations were validated by the ClinicalTrials.gov database (AUROC = 0.826) and we showcased several novel deepDR-predicted approved drugs for Alzheimer's disease (e.g. risperidone and aripiprazole) and Parkinson's disease (e.g. methylphenidate and pergolide). AVAILABILITY AND IMPLEMENTATION: Source code and data can be downloaded from https://github.com/ChengF-Lab/deepDR. SUPPLEMENTARY INFORMATION: Supplementary data are available online at Bioinformatics.
Published on December 10, 2019
READ PUBLICATION →

C-Linked Glycomimetic Libraries Accessed by the Passerini Reaction.

Authors: Vlahovicek-Kahlina K, Suc Sajko J, Jeric I

Abstract: Carbohydrates and their conjugates are the most abundant natural products, with diverse and highly important biological roles. Synthetic glycoconjugates are versatile tools used to probe biological systems and interfere with them. In an endeavor to provide an efficient route to glycomimetics comprising structurally diverse carbohydrate units, we describe herein a robust, stereoselective, multicomponent approach. Isopropylidene-protected carbohydrate-derived aldehydes and ketones were utilized in the Passerini reaction, giving different glycosylated structures in high yields and diastereoselectivities up to 90:10 diastereomeric ratio (d.r). Access to highly valuable building blocks based on alpha-hydroxy C-glycosyl acids or more complex systems was elaborated by simple post-condensation methodologies.