Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2022
READ PUBLICATION →

Elucidation of Potential Targets of San-Miao-San in the Treatment of Osteoarthritis Based on Network Pharmacology and Molecular Docking Analysis.

Authors: Chu M, Gao T, Zhang X, Kang W, Feng Y, Cai Z, Wu P

Abstract: Background: To examine the potential therapeutic targets of Chinese medicine formula San-Miao-San (SMS) in the treatment of osteoarthritis (OA), we analyzed the active compounds of SMS and key targets of OA and investigated the interacting pathways using network pharmacological approaches and molecular docking analysis. Methods: The active compounds of SMS and OA-related targets were searched and screened by TCMSP, DrugBank, Genecards, OMIM, DisGeNet, TTD, and PharmGKB databases. Venn analysis and PPI were performed for evaluating the interaction of the targets. The topological analysis and molecular docking were used to confirm the subnetworks and binding affinity between active compounds and key targets, respectively. The GO and KEGG functional enrichment analysis for all targets of each subnetwork were conducted. Results: A total of 57 active compounds and 203 targets of SMS were identified by the TCMSP and DrugBank database, while 1791 OA-related targets were collected from the Genecards, OMIM, DisGeNet, TTD, and PharmGKB databases. By Venn analysis, 108 intersection targets between SMS targets and OA targets were obtained. Most of these intersecting targets involve quercetin, kaempferol, and wogonin. Moreover, intersecting targets identified by PPI analysis were introduced into Cytoscape plug-in CytoNCA for topological analysis. Hence, nine key targets of SMS for OA treatment were obtained. Furthermore, the potential binding conformations between active compounds and key targets were found through molecular docking analysis. According to the DAVID enrichment analysis, the main biological processes of SMS in the treatment of OA include oxidative stress, response to reactive oxygen species, and apoptotic signaling pathways. Finally, we found wogonin, the key compound in SMS, might play a pivotal role on Toll-like receptor, IL-17, TNF, osteoclast differentiation, and apoptosis signaling pathways through interacting with four key targets. Conclusions: Therefore, this study elucidated the potential active compounds and key targets of SMS in the treatment of OA based on network pharmacology.
Published in 2022
READ PUBLICATION →

Deciphering the involvement of iron targets in colorectal cancer: a network biology approach.

Authors: Khan AA, Ashraf MT, Aldakheel FM, Sayi Yazgan A, Zaidi R

Abstract: Several studies suggested the role of heme iron, but not non-heme iron in colorectal cancer. A network and system biology-based approach was used to understand the role of heme and non-heme iron on colorectal cancer etiology. Heme and non-heme iron targets were screened in addition to CRC targets. The protein-protein interaction map of both iron targets was prepared with CRC targets. Moreover, functional enrichment analysis was performed in order to understand their role in cancer etiology. The heme iron is predicted to modulate several cancer-associated pathways. Our results indicate several targets and pathways, including IL-4/IL-13, ACE, and HIF-1 signaling, that may have an important role in heme iron-mediated CRC and must be given consideration for understanding their role in colorectal cancer.
Published in December 2022
READ PUBLICATION →

The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking.

Authors: Zhu W, Li Y, Zhao J, Wang Y, Li Y, Wang Y

Abstract: BACKGROUND: Interstitial lung disease (ILD) is associated with substantial morbidity and mortality, which is one of the key systematic manifestations of connective tissue disease (CTD). Tripterygium wilfordii, known as Leigongteng in Chinese, has been applied to treat connective tissue disease-related interstitial lung disease (CTD-ILD) for many years. Triptolide is a key effective component from Tripterygium wilfordii. But the molecular mechanism of Triptolide for treating CTD-ILD is not yet clear. METHODS: Gaining insight into the molecular mechanism of Triptolide intervention CTD-ILD, we used the method of network pharmacology. And then we conducted drug-target networks to analyse the potential protein targets between Triptolide and CTD-ILD. Finally, AutoDock Vina was selected for molecular docking. RESULTS: By analysing the interaction genes between Triptolide and CTD-ILD, 242 genes were obtained. The top 10 targets of the highest enrichment scores were STAT3, AKT1, MAPK1, IL6, TP53, MAPK3, RELA, TNF, JUN, JAK2. GO and KEGG enrichment analysis exhibited that multiple signalling pathways were involved. PI3K-Akt, multiple virus infections, cancer signalling, chemokine, and apoptosis signalling pathway are the main pathways for Triptolide intervention CTD-ILD. And it is related to various biological processes such as inflammation, infection, cell apoptosis, and cancer. Molecular docking shows Triptolide can bind with its target protein in a good bond by intermolecular force. CONCLUSIONS: This study preliminarily reveals the internal molecular mechanism of Triptolide interfere with CTD-ILD through multiple targets, multiple access, validated through molecular docking.KEY MESSAGESTriptolide intervention CTD-ILD, which are related to various biological processes such as inflammation, infection, cell apoptosis, and cancer.PI3K-Akt, multiple virus infections, and apoptosis signalling pathway are the main pathways for Triptolide intervention CTD-ILD.Triptolide can bind with related target protein in a good bond by Intermolecular force, exhibiting a good docking activity.
Published in 2022
READ PUBLICATION →

Effect of New 2-Thioxoimidazolidin-4-one Compounds against Staphylococcus aureus Clinical Strains and Immunological Markers' Combinations.

Authors: Subhi HT, Fatah HR, Muhammad HA

Abstract: Although the structure-activity relationship indicates that the 4-thioxoimidazolidin ring is essential for antibacterial activities and pharmaceutical applications, there were no enough studies on the derivatives of this compound. Evaluating the new hydantoin compounds C5 (3-((2-bromobenzylidene) amino)-2- thioxoimidazolidin-4-one) and C6 (3-((4- methoxybenzylidene) amino)-2-thioxoimidazolidin-4-one) that were prepared against clinical Staphylococcus aureus isolates for antibacterial, antibiofilm, and antihemagglutination activities is the aim of this study. Therefore, the potential clinical resistance of the strains was evaluated by their ability to form biofilms, antibiotic resistance, and agglutinate erythrocytes macroscopically and microscopically; besides, the bacterial biofilm was screened for any association with the patient's serum immunoglobulin levels and complements. Despite the effective concentration for C5 and C6 compounds, which is = 31.25 mug/ml, the reduction rate is not concentration-dependent; it depends on the molecular docking of the hydantoin compounds. Hence, the effect of the minimal inhibitory concentrations (MICs) is variable. In this study, the results for the compounds (with the concentration of 31.25-62.5 mug/mL for C5 and 62.5-125 mug/mL for C6) significantly manifest the antibacteria, antibiofilm, and antihemagglutination effects against the virulent strains of S. aureus due to the high percentage of biofilm inhibition that was caused by the new hydantoin compounds. Besides, time-kill kinetics studies showed that these compounds pose bactericidal action. Overall, this study revealed that the new hydantoin derivatives have an interesting potential as new antibacterial drugs through the inhibition of bacterial adhesion. The infections of these isolates activate the complement system through the lectin pathway. Nevertheless, these compounds can be improved in order to be used at even lower concentrations.
Published in 2022
READ PUBLICATION →

DenovoProfiling: A webserver for de novo generated molecule library profiling.

Authors: Liu Z, Du J, Lin Z, Li Z, Liu B, Cui Z, Fang J, Xie L

Abstract: Various deep learning-based architectures for molecular generation have been proposed for de novo drug design. The flourish of the de novo molecular generation methods and applications has created a great demand for the visualization and functional profiling for the de novo generated molecules. An increasing number of publicly available chemogenomic databases sets good foundations and creates good opportunities for comprehensive profiling of the de novo library. In this paper, we present DenovoProfiling, a webserver dedicated to de novo library visualization and functional profiling. Currently, DenovoProfiling contains six modules: (1) identification & visualization module for chemical structure visualization and identify the reported structures, (2) chemical space module for chemical space exploration using similarity maps, principal components analysis (PCA), drug-like properties distribution, and scaffold-based clustering, (3) ADMET prediction module for predicting the ADMET properties of the de novo molecules, (4) molecular alignment module for three dimensional molecular shape analysis, (5) drugs mapping module for identifying structural similar drugs, and (6) target & pathway module for identifying the reported targets and corresponding functional pathways. DenovoProfiling could provide structural identification, chemical space exploration, drug mapping, and target & pathway information. The comprehensive annotated information could give users a clear picture of their de novo library and could guide the further selection of candidates for chemical synthesis and biological confirmation. DenovoProfiling is freely available at http://denovoprofiling.xielab.net.
Published in 2022
READ PUBLICATION →

Systematic review of gastric cancer-associated genetic variants, gene-based meta-analysis, and gene-level functional analysis to identify candidate genes for drug development.

Authors: Lee S, Yang HK, Lee HJ, Park DJ, Kong SH, Park SK

Abstract: Objective: Despite being a powerful tool to identify novel variants, genome-wide association studies (GWAS) are not sufficient to explain the biological function of variants. In this study, we aimed to elucidate at the gene level the biological mechanisms involved in gastric cancer (GC) development and to identify candidate drug target genes. Materials and methods: We conducted a systematic review for GWAS on GC following the PRISMA guidelines. Single nucleotide polymorphism (SNP)-level meta-analysis and gene-based analysis (GBA) were performed to identify SNPs and genes significantly associated with GC. Expression quantitative trait loci (eQTL), disease network, pathway enrichment, gene ontology, gene-drug, and chemical interaction analyses were conducted to elucidate the function of the genes identified by GBA. Results: A review of GWAS on GC identified 226 SNPs located in 91 genes. In the comprehensive GBA, 44 genes associated with GC were identified, among which 12 genes (THBS3, GBAP1, KRTCAP2, TRIM46, HCN3, MUC1, DAP3, EFNA1, MTX1, PRKAA1, PSCA, and ABO) were eQTL. Using disease network and pathway analyses, we identified that PRKAA, THBS3, and EFNA1 were significantly associated with the PI3K-Alt-mTOR-signaling pathway, which is involved in various oncogenic processes, and that MUC1 acts as a regulator in both the PI3K-Alt-mTOR and P53 signaling pathways. Furthermore, RPKAA1 had the highest number of interactions with drugs and chemicals. Conclusion: Our study suggests that PRKAA1, a gene in the PI3K-Alt-mTOR-signaling pathway, could be a potential target gene for drug development associated with GC in the future. Systematic Review Registration: website, identifier registration number.
Published in 2022
READ PUBLICATION →

Lung adenocarcinoma-related target gene prediction and drug repositioning.

Authors: Huang RX, Siriwanna D, Cho WC, Wan TK, Du YR, Bennett AN, He QE, Liu JD, Huang XT, Chan KHK

Abstract: Lung cancer is the leading cause of cancer deaths globally, and lung adenocarcinoma (LUAD) is the most common type of lung cancer. Gene dysregulation plays an essential role in the development of LUAD. Drug repositioning based on associations between drug target genes and LUAD target genes are useful to discover potential new drugs for the treatment of LUAD, while also reducing the monetary and time costs of new drug discovery and development. Here, we developed a pipeline based on machine learning to predict potential LUAD-related target genes through established graph attention networks (GATs). We then predicted potential drugs for the treatment of LUAD through gene coincidence-based and gene network distance-based methods. Using data from 535 LUAD tissue samples and 59 precancerous tissue samples from The Cancer Genome Atlas, 48,597 genes were identified and used for the prediction model building of the GAT. The GAT model achieved good predictive performance, with an area under the receiver operating characteristic curve of 0.90. 1,597 potential LUAD-related genes were identified from the GAT model. These LUAD-related genes were then used for drug repositioning. The gene overlap and network distance with the target genes were calculated for 3,070 drugs and 672 preclinical compounds approved by the US Food and Drug Administration. At which, bromoethylamine was predicted as a novel potential preclinical compound for the treatment of LUAD, and cimetidine and benzbromarone were predicted as potential therapeutic drugs for LUAD. The pipeline established in this study presents new approach for developing targeted therapies for LUAD.
Published in 2022
READ PUBLICATION →

Investigation of the protective mechanism of leonurine against acute myocardial ischemia by an integrated metabolomics and network pharmacology strategy.

Authors: Rong W, Li J, Wang L, Luo S, Liang T, Qian X, Zhang X, Zhou Q, Zhu Y, Zhu Q

Abstract: Background: Leonurus japonicus Houtt has an obvious efficacy on cardiovascular diseases. As the most representative component in the herb, leonurine has attracted increasing attention for its potential in myocardial ischemia. However, its protective mechanism against myocardial ischemia remains incompletely elucidated. Objectives: The present study aimed to reveal the potential mechanism of leonurine in acute myocardial ischemia using a strategy combining metabolomics and network pharmacology. Methods: First, a metabolomics method was proposed to identify the differential metabolites of plasma in rats. Then, network pharmacology was performed to screen candidate targets of leonurine against acute myocardial ischemia. A compound-reaction-enzyme-gene network was thus constructed with the differential metabolites and targets. Finally, molecular docking was carried out to predict the binding capability of leonurine with key targets. Results: A total of 32 differential metabolites were identified in rat plasma, and 16 hub genes were detected through network pharmacology. According to the results of compound-reaction-enzyme-gene network and molecular docking, what was screened included six key targets (GSR, CYP2C9, BCHE, GSTP1, TGM2, and PLA2G2A) and seven differential metabolites (glycerylphosphorylcholine, lysophosphatidylcholine, choline phosphate, linoleic acid, 13-HpODE, tryptophan and glutamate) with four important metabolic pathways involved: glycerophospholopid metabolism, linoleic acid metabolism, tryptophan metabolism and glutamate metabolism. Among them, glycerophospholipid and tryptophan metabolism were shown to be important, since the regulation of leonurine on these two pathways was also observed in our previous metabolomics study conducted on clinical hyperlipidemia patients. Conclusion: This is the first study of its kind to reveal the underlying mechanism of leonurine against acute myocardial ischemia through a strategy combining metabolomics and network pharmacology, which provides a valuable reference for the research on its future application.
Published in 2022
READ PUBLICATION →

Evolution of Artificial Intelligence-Powered Technologies in Biomedical Research and Healthcare.

Authors: Diaz-Flores E, Meyer T, Giorkallos A

Abstract: Artificial intelligence represents a powerful computational tool to analyze large amounts of data with and without supervision. Such powerful techniques have significantly impacted the advancement of multiple sectors from social media to data security, the automotive industry, gaming, finances, and healthcare. Only recently, however, artificial intelligence has been making significant strides in healthcare and biomedical research. Despite such advancements and the expectation of potential breakthroughs arising from implementing artificial intelligence in these fields, there is limited knowledge transfer and training for most healthcare professionals on using these computational techniques. While there is a wide array of publications on artificial intelligence applied to scientific research, most are too technical (not aimed at the non-initiated), too broad (with an overwhelming amount of data), or too focused on a particular application. This chapter presents an overview of artificial intelligence and its derivatives, giving a historical perspective, a succinct technical explanation of the underlying basis, and some examples of its applications. It finishes with a brief discussion on the challenges for implementing AI to be fully accepted in the scientific community.
Published in 2022
READ PUBLICATION →

Network pharmacology and experimental analysis to reveal the mechanism of Dan-Shen-Yin against endothelial to mesenchymal transition in atherosclerosis.

Authors: Hong M, Wu Y, Zhang H, Gu J, Chen J, Guan Y, Qin X, Li Y, Cao J

Abstract: Atherosclerosis is a chronic inflammatory disease characterized by the formation of plaque and endothelial dysfunction. Under pro-inflammatory conditions, endothelial cells adopt a mesenchymal phenotype by a process called endothelial-to-mesenchymal transition (EndMT) which plays an important role in the pathogenesis of atherosclerosis. Dan-Shen-Yin (DSY) is a well-known traditional Chinese medicine used in the treatment of cardiovascular disease. However, the molecular mechanism whereby DSY mitigates atherosclerosis remains unknown. Therefore, we employed a network pharmacology-based strategy in this study to determine the therapeutic targets of DSY, and in vitro experiments to understand the molecular pharmacology mechanism. The targets of the active ingredients of DSY related to EndMT and atherosclerosis were obtained and used to construct a protein-protein interaction (PPI) network followed by network topology and functional enrichment analysis. Network pharmacology analysis revealed that the PI3K/AKT pathway was the principal signaling pathway of DSY against EndMT in atherosclerosis. Molecular docking simulations indicated strong binding capabilities of DSY's bioactive ingredients toward PI3K/AKT pathway molecules. Experimentally, DSY could efficiently modify expression of signature EndMT genes and decrease expression of PI3K/AKT pathway signals including integrin alphaV, integrin beta1, PI3K, and AKT1 in TGF-beta2-treated HUVECs. LASP1, which is upstream of the PI3K/AKT pathway, had strong binding affinity to the majority of DSY's bioactive ingredients, was induced by EndMT-promoting stimuli involving IL-1beta, TGF-beta2, and hypoxia, and was downregulated by DSY. Knock-down of LASP1 attenuated the expression of integrin alphaV, integrin beta1, PI3K, AKT1 and EndMT-related genes induced by TGF-beta2, and minimized the effect of DSY. Thus, our study showed that DSY potentially exerted anti-EndMT activity through the LASP1/PI3K/AKT pathway, providing a possible new therapeutic intervention for atherosclerosis.