Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2020
READ PUBLICATION →

A Definition of "Multitargeticity": Identifying Potential Multitarget and Selective Ligands Through a Vector Analysis.

Authors: Sanchez-Tejeda JF, Sanchez-Ruiz JF, Salazar JR, Loza-Mejia MA

Abstract: The design of multitarget drugs is an essential area of research in Medicinal Chemistry since they have been proposed as potential therapeutics for the management of complex diseases. However, defining a multitarget drug is not an easy task. In this work, we propose a vector analysis for measuring and defining "multitargeticity." We developed terms, such as order and force of a ligand, to finally reach two parameters: multitarget indexes 1 and 2. The combination of these two indexes allows discrimination of multitarget drugs. Several training sets were constructed to test the usefulness of the indexes: an experimental training set, with real affinities, a docking training set, within theoretical values, and an extensive database training set. The indexes proved to be useful, as they were used independently in silico and experimental data, identifying actual multitarget compounds and even selective ligands in most of the training sets. We then applied these indexes to evaluate a virtual library of potential ligands for targets related to multiple sclerosis, identifying 10 compounds that are likely leads for the development of multitarget drugs based on their in silico behavior. With this work, a new milestone is made in the way of defining multitargeticity and in drug design.
Published in 2020
READ PUBLICATION →

Network Pharmacology-Based Investigation of the System-Level Molecular Mechanisms of the Hematopoietic Activity of Samul-Tang, a Traditional Korean Herbal Formula.

Authors: Lee HS, Lee IH, Park SI, Lee DY

Abstract: Hematopoiesis is a dynamic process of the continuous production of diverse blood cell types to meet the body's physiological demands and involves complex regulation of multiple cellular mechanisms in hematopoietic stem cells, including proliferation, self-renewal, differentiation, and apoptosis. Disruption of the hematopoietic system is known to cause various hematological disorders such as myelosuppression. There is growing evidence on the beneficial effects of herbal medicines on hematopoiesis; however, their mechanism of action remains unclear. In this study, we conducted a network pharmacological-based investigation of the system-level mechanisms underlying the hematopoietic activity of Samul-tang, which is an herbal formula consisting of four herbal medicines, including Angelicae Gigantis Radix, Rehmanniae Radix Preparata, Paeoniae Radix Alba, and Cnidii Rhizoma. In silico analysis of the absorption-distribution-metabolism-excretion model identified 16 active phytochemical compounds contained in Samul-tang that may target 158 genes/proteins associated with myelosuppression to exert pharmacological effects. Functional enrichment analysis suggested that the targets of Samul-tang were significantly enriched in multiple pathways closely related to the hematopoiesis and myelosuppression development, including the PI3K-Akt, MAPK, IL-17, TNF, FoxO, HIF-1, NF-kappa B, and p53 signaling pathways. Our study provides novel evidence regarding the system-level mechanisms underlying the hematopoiesis-promoting effect of herbal medicines for hematological disorder treatment.
Published in 2020
READ PUBLICATION →

Deformable Liposomal Hydrogel for Dermal and Transdermal Delivery of Meloxicam.

Authors: Zhang ZJ, Osmalek T, Michniak-Kohn B

Abstract: Background and Aim: Meloxicam (MX) is a potent hydrophobic non-steroidal anti-inflammatory drug used to reduce inflammation and pain. However, its oral dosage form can cause many adverse gastrointestinal effects. In the present study, a poloxamer P407 based hydrogel system containing transfersomes or flavosomes has been prepared as a potential therapeutic vehicle for the topical delivery of MX. Methods: In this study, MX was encapsulated in conventional liposomes, transfersomes, and flavosomes. The obtained liposomal vesicles were characterized in terms of size, drug entrapment efficiency, zeta potential, and stability. These MX-loaded liposomal formulations were further incorporated into a poloxamer P407 gel and evaluated using rheological properties, a stability study and an ex vivo permeation study through human cadaver skin by both HPLC analysis and confocal laser scanning microscopy (CLSM). Results: The developed deformable liposomes exhibited homogeneous vesicle sizes less than 120 nm with a higher entrapment efficiency as compared to conventional liposomes. The deformable liposomal gel formulations showed improved permeability compared to a conventional liposomal gel and a liposome-free gel. The enhancement effect was also clearly visible by CLSM. Conclusion: These deformable liposomal hydrogel formulations can be a promising alternative to conventional oral delivery of MX by topical administration. Notably, flavosome-loaded gel formulations displayed the highest permeability through the deeper layers of the skin and shortened lag time, indicating a potential faster on-site pain relief and anti-inflammatory effect.
Published in 2020
READ PUBLICATION →

Improvement of Prediction Performance With Conjoint Molecular Fingerprint in Deep Learning.

Authors: Xie L, Xu L, Kong R, Chang S, Xu X

Abstract: The accurate predicting of physical properties and bioactivity of drug molecules in deep learning depends on how molecules are represented. Many types of molecular descriptors have been developed for quantitative structure-activity/property relationships quantitative structure-activity relationships (QSPR). However, each molecular descriptor is optimized for a specific application with encoding preference. Considering that standalone featurization methods may only cover parts of information of the chemical molecules, we proposed to build the conjoint fingerprint by combining two supplementary fingerprints. The impact of conjoint fingerprint and each standalone fingerprint on predicting performance was systematically evaluated in predicting the logarithm of the partition coefficient (logP) and binding affinity of protein-ligand by using machine learning/deep learning (ML/DL) methods, including random forest (RF), support vector regression (SVR), extreme gradient boosting (XGBoost), long short-term memory network (LSTM), and deep neural network (DNN). The results demonstrated that the conjoint fingerprint yielded improved predictive performance, even outperforming the consensus model using two standalone fingerprints among four out of five examined methods. Given that the conjoint fingerprint scheme shows easy extensibility and high applicability, we expect that the proposed conjoint scheme would create new opportunities for continuously improving predictive performance of deep learning by harnessing the complementarity of various types of fingerprints.
Published in 2020
READ PUBLICATION →

BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR-Drug Interaction Based on Wordbook Learning From Sequences.

Authors: Qiu W, Lv Z, Hong Y, Jia J, Xiao X

Abstract: Background: As a class of membrane protein receptors, G protein-coupled receptors (GPCRs) are very important for cells to complete normal life function and have been proven to be a major drug target for widespread clinical application. Hence, it is of great significance to find GPCR targets that interact with drugs in the process of drug development. However, identifying the interaction of the GPCR-drug pairs by experimental methods is very expensive and time-consuming on a large scale. As more and more database about GPCR-drug pairs are opened, it is viable to develop machine learning models to accurately predict whether there is an interaction existing in a GPCR-drug pair. Methods: In this paper, the proposed model aims to improve the accuracy of predicting the interactions of GPCR-drug pairs. For GPCRs, the work extracts protein sequence features based on a novel bag-of-words (BOW) model improved with weighted Silhouette Coefficient and has been confirmed that it can extract more pattern information and limit the dimension of feature. For drug molecules, discrete wavelet transform (DWT) is used to extract features from the original molecular fingerprints. Subsequently, the above-mentioned two types of features are contacted, and SMOTE algorithm is selected to balance the training dataset. Then, artificial neural network is used to extract features further. Finally, a gradient boosting decision tree (GBDT) model is trained with the selected features. In this paper, the proposed model is named as BOW-GBDT. Results: D92M and Check390 are selected for testing BOW-GBDT. D92M is used for a cross-validation dataset which contains 635 interactive GPCR-drug pairs and 1,225 non-interactive pairs. Check390 is used for an independent test dataset which consists of 130 interactive GPCR-drug pairs and 260 non-interactive GPCR-drug pairs, and each element in Check390 cannot be found in D92M. According to the results, the proposed model has a better performance in generation ability compared with the existing machine learning models. Conclusion: The proposed predictor improves the accuracy of the interactions of GPCR-drug pairs. In order to facilitate more researchers to use the BOW-GBDT, the predictor has been settled into a brand-new server, which is available at http://www.jci-bioinfo.cn/bowgbdt.
Published in 2020
READ PUBLICATION →

An Integrative Pharmacology-Based Pattern to Uncover the Pharmacological Mechanism of Ginsenoside H Dripping Pills in the Treatment of Depression.

Authors: Zhao L, Guo R, Cao N, Lin Y, Yang W, Pei S, Ma X, Zhang Y, Li Y, Song Z, Du W, Xiao X, Liu C

Abstract: Objectives: To evaluate the pharmacodynamical effects and pharmacological mechanism of Ginsenoside H dripping pills (GH) in chronic unpredictable mild stress (CUMS) model rats. Methods: First, the CUMS-induced rat model was established to assess the anti-depressant effects of GH (28, 56, and 112 mg/kg) by the changes of the behavioral indexes (sucrose preference, crossing score, rearing score) and biochemical indexes (serotonin, dopamine, norepinephrine) in Hippocampus. Then, the components of GH were identified by ultra-performance liquid chromatography-iron trap-time of flight-mass spectrometry (UPLC/IT-TOF MS). After network pharmacology analysis, the active ingredients of GH were further screened out based on OB and DL, and the PPI network of putative targets of active ingredients of GH and depression candidate targets was established based on STRING database. The PPI network was analyzed topologically to obtain key targets, so as to predict the potential pharmacological mechanism of GH acting on depression. Finally, some major target proteins involved in the predictive signaling pathway were validated experimentally. Results: The establishment of CUMS depression model was successful and GH has antidepressant effects, and the middle dose of GH (56 mg/kg) showed the best inhibitory effects on rats with depressant-like behavior induced by CUMS. Twenty-eight chemical components of GH were identified by UPLC/IT-TOF MS. Subsequently, 20(S)-ginsenoside Rh2 was selected as active ingredient and the PPI network of the 43 putative targets of 20(S)-ginsenoside Rh2 containing in GH and the 230 depression candidate targets, was established based on STRING database, and 47 major targets were extracted. Further network pharmacological analysis indicated that the cAMP signaling pathway may be potential pharmacological mechanism regulated by GH acting on depression. Among the cAMP signaling pathway, the major target proteins, namely, cAMP, PKA, CREB, p-CREB, BDNF, were used to verify in the CUMS model rats. The results showed that GH could activate the cAMP-PKA-CREB-BDNF signaling pathway to exert antidepressant effects. Conclusions: An integrative pharmacology-based pattern was used to uncover that GH could increase the contents of DA, NE and 5-HT, activate cAMP-PKA-CREB-BDNF signaling pathway exert antidepressant effects.
Published in 2020
READ PUBLICATION →

Glibenclamide, ATP and metformin increases the expression of human bile salt export pump ABCB11.

Authors: Vats N, Dubey RC, Sanal MG, Taneja P, Venugopal SK

Abstract: Background: Bile salt export pump (BSEP/ABCB11) is important in the maintenance of the enterohepatic circulation of bile acids and drugs. Drugs such as rifampicin and glibenclamide inhibit BSEP. Progressive familial intrahepatic cholestasis type-2, a lethal pediatric disease, some forms of intrahepatic cholestasis of pregnancy, and drug-induced cholestasis are associated with BSEP dysfunction. Methods: We started with a bioinformatic approach to identify the relationship between ABCB11 and other proteins, microRNAs, and drugs. A microarray data set of the liver samples from ABCB11 knockout mice was analyzed using GEO2R. Differentially expressed gene pathway enrichment analysis was conducted using ClueGo. A protein-protein interaction network was constructed using STRING application in Cytoscape. Networks were analyzed using Cytoscape. CyTargetLinker was used to screen the transcription factors, microRNAs and drugs. Predicted drugs were validated on human liver cell line, HepG2. BSEP expression was quantified by real-time PCR and western blotting. Results: ABCB11 knockout in mice was associated with a predominant upregulation and downregulation of genes associated with cellular component movement and sterol metabolism, respectively. We further identified the hub genes in the network. Genes related to immune activity, cell signaling, and fatty acid metabolism were dysregulated. We further identified drugs (glibenclamide and ATP) and a total of 14 microRNAs targeting the gene. Western blot and real-time PCR analysis confirmed the upregulation of BSEP on the treatment of HepG2 cells with glibenclamide, ATP, and metformin. Conclusions: The differential expression of cell signaling genes and those related to immune activity in ABCB11 KO animals may be secondary to cell injury. We have found glibenclamide, ATP, and metformin upregulates BSEP. The mechanisms involved and the clinical relevance of these findings need to be investigated.
Published in December 2020
READ PUBLICATION →

Drug-target-ADR Network and Possible Implications of Structural Variants in Adverse Events.

Authors: Dafniet B, Cerisier N, Audouze K, Taboureau O

Abstract: Adverse drug reactions (ADRs) are of major concern in drug safety. However, due to the biological complexity of human systems, understanding the underlying mechanisms involved in development of ADRs remains a challenging task. Here, we applied network sciences to analyze a tripartite network between 1000 drugs, 1407 targets, and 6164 ADRs. It allowed us to suggest drug targets susceptible to be associated to ADRs and organs, based on the system organ class (SOC). Furthermore, a score was developed to determine the contribution of a set of proteins to ADRs. Finally, we identified proteins that might increase the susceptibility of genes to ADRs, on the basis of knowledge about genomic structural variation in genes encoding proteins targeted by drugs. Such analysis should pave the way to individualize drug therapy and precision medicine.
Published in December 2020
READ PUBLICATION →

Identification of the ZEB2 gene as a potential target for epilepsy therapy and the association between rs10496964 and ZEB2 expression.

Authors: Wang S, Wang D, Cai X, Wu Q, Han Y

Abstract: OBJECTIVE: An association between the rs10496964 polymorphism and the ZEB2 gene has not yet been reported, and the role of ZEB2 in epilepsy therapy is also unclear. The aims of this research were to evaluate the role of ZEB2 in the therapy of epilepsy and to explore the association between rs10496964 and ZEB2 expression. METHODS: We used the expression quantitative trait loci (eQTL) dataset resource from the Brain eQTL Almanac to evaluate the association between rs10496964 and ZEB2 expression in human brain tissue. Pathway and process enrichment analysis, protein-protein interaction analysis, and PhosphoSitePlus(R) analysis were then performed to further evaluate the role of ZEB2 in the therapy of epilepsy. RESULTS: The rs10496964 polymorphism was found to regulate the expression of ZEB2 in human brain tissue. The ZEB2 protein interacts with the targets of approved antiepileptic drugs, and a post-translational acetylation modification of ZEB2 was associated with an epilepsy drug therapy. CONCLUSION: Our findings suggest that ZEB2 may be involved in the therapy of epilepsy, and rs10496964 regulates ZEB2 expression in human brain tissue.
Published in 2020
READ PUBLICATION →

DeepH-DTA: Deep Learning for Predicting Drug-Target Interactions: A Case Study of COVID-19 Drug Repurposing.

Authors: Abdel-Basset M, Hawash H, Elhoseny M, Chakrabortty RK, Ryan M

Abstract: The rapid spread of novel coronavirus pneumonia (COVID-19) has led to a dramatically increased mortality rate worldwide. Despite many efforts, the rapid development of an effective vaccine for this novel virus will take considerable time and relies on the identification of drug-target (DT) interactions utilizing commercially available medication to identify potential inhibitors. Motivated by this, we propose a new framework, called DeepH-DTA, for predicting DT binding affinities for heterogeneous drugs. We propose a heterogeneous graph attention (HGAT) model to learn topological information of compound molecules and bidirectional ConvLSTM layers for modeling spatio-sequential information in simplified molecular-input line-entry system (SMILES) sequences of drug data. For protein sequences, we propose a squeezed-excited dense convolutional network for learning hidden representations within amino acid sequences; while utilizing advanced embedding techniques for encoding both kinds of input sequences. The performance of DeepH-DTA is evaluated through extensive experiments against cutting-edge approaches utilising two public datasets (Davis, and KIBA) which comprise eclectic samples of the kinase protein family and the pertinent inhibitors. DeepH-DTA attains the highest Concordance Index (CI) of 0.924 and 0.927 and also achieved a mean square error (MSE) of 0.195 and 0.111 on the Davis and KIBA datasets respectively. Moreover, a study using FDA-approved drugs from the Drug Bank database is performed using DeepH-DTA to predict the affinity scores of drugs against SARS-CoV-2 amino acid sequences, and the results show that that the model can predict some of the SARS-Cov-2 inhibitors that have been recently approved in many clinical studies.