Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on June 30, 2020
READ PUBLICATION →

In silico Drug Repurposing to combat COVID-19 based on Pharmacogenomics of Patient Transcriptomic Data.

Authors: Das S, Camphausen K, Shankavaram U

Abstract: The ongoing global pandemic of coronavirus disease 2019 (COVID-19) continues to affect a growing number of populations in different parts of the world. In the current situation, drug repurposing is a viable strategy to combat COVID-19. The drugs targeting the host receptors that interact with SARS-CoV-2 are possible candidates. However, assessment of their effectiveness in COVID-19 patients is necessary before prioritizing them for further study. We attempted to shortlist the candidate drugs using an in-silico approach. First, we analysed two published transcriptomic data sets of COVID-19- and SARS-infected patients compared to healthy individuals to find the key pathways altered after infection. Then, using publicly available drug perturbational data sets in human cell lines from the Broad Institute Connectivity Map (CMAP), we assessed the effects of the approved drugs on the altered pathways. We also used the available pharmacogenomic data sets from the Genomics of Drug Sensitivity in Cancer (GDSC) portal to assess the effects of the altered pathways on resistance or sensitivity to the drugs in human cell lines. Our analysis identified many candidate drugs, some of which are already being investigated for treatment of COVID-19 and can serve as a basis for prioritizing additional viable candidate drugs for COVID-19.
Published in June 2020
READ PUBLICATION →

Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2.

Authors: Pokhrel R, Chapagain P, Siltberg-Liberles J

Abstract: Introduction. The emergence of SARS-CoV-2 has taken humanity off guard. Following an outbreak of SARS-CoV in 2002, and MERS-CoV about 10 years later, SARS-CoV-2 is the third coronavirus in less than 20 years to cross the species barrier and start spreading by human-to-human transmission. It is the most infectious of the three, currently causing the COVID-19 pandemic. No treatment has been approved for COVID-19. We previously proposed targets that can serve as binding sites for antiviral drugs for multiple coronaviruses, and here we set out to find current drugs that can be repurposed as COVID-19 therapeutics.Aim. To identify drugs against COVID-19, we performed an in silico virtual screen with the US Food and Drug Administration (FDA)-approved drugs targeting the RNA-dependent RNA polymerase (RdRP), a critical enzyme for coronavirus replication.Methodology. Initially, no RdRP structure of SARS-CoV-2 was available. We performed basic sequence and structural analysis to determine if RdRP from SARS-CoV was a suitable replacement. We performed molecular dynamics simulations to generate multiple starting conformations that were used for the in silico virtual screen. During this work, a structure of RdRP from SARS-CoV-2 became available and was also included in the in silico virtual screen.Results. The virtual screen identified several drugs predicted to bind in the conserved RNA tunnel of RdRP, where many of the proposed targets were located. Among these candidates, quinupristin is particularly interesting because it is expected to bind across the RNA tunnel, blocking access from both sides and suggesting that it has the potential to arrest viral replication by preventing viral RNA synthesis. Quinupristin is an antibiotic that has been in clinical use for two decades and is known to cause relatively minor side effects.Conclusion. Quinupristin represents a potential anti-SARS-CoV-2 therapeutic. At present, we have no evidence that this drug is effective against SARS-CoV-2 but expect that the biomedical community will expeditiously follow up on our in silico findings.
Published in June 2020
READ PUBLICATION →

A Physiologically-Based Quantitative Systems Pharmacology Model of the Incretin Hormones GLP-1 and GIP and the DPP4 Inhibitor Sitagliptin.

Authors: Balazki P, Schaller S, Eissing T, Lehr T

Abstract: Incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play a major role in regulation of postprandial glucose and the development of type 2 diabetes mellitus. The incretins are rapidly metabolized, primarily by the enzyme dipeptidyl-peptidase 4 (DPP4), and the neutral endopeptidase (NEP), although the exact metabolization pathways are unknown. We developed a physiologically-based (PB) quantitative systems pharmacology model of GLP-1 and GIP and their metabolites that describes the secretion of the incretins in response to intraduodenal glucose infusions and their degradation by DPP4 and NEP. The model describes the observed data and suggests that NEP significantly contributes to the metabolization of GLP-1, and the traditional assays for the total GLP-1 and GIP forms measure yet unknown entities produced by NEP. We further extended the model with a PB pharmacokinetics/pharmacodynamics model of the DPP4 inhibitor sitagliptin that allows predictions of the effects of this medication class on incretin concentrations.
Published on June 30, 2020
READ PUBLICATION →

Towards the routine use of in silico screenings for drug discovery using metabolic modelling.

Authors: Bintener T, Pacheco MP, Sauter T

Abstract: Currently, the development of new effective drugs for cancer therapy is not only hindered by development costs, drug efficacy, and drug safety but also by the rapid occurrence of drug resistance in cancer. Hence, new tools are needed to study the underlying mechanisms in cancer. Here, we discuss the current use of metabolic modelling approaches to identify cancer-specific metabolism and find possible new drug targets and drugs for repurposing. Furthermore, we list valuable resources that are needed for the reconstruction of cancer-specific models by integrating various available datasets with genome-scale metabolic reconstructions using model-building algorithms. We also discuss how new drug targets can be determined by using gene essentiality analysis, an in silico method to predict essential genes in a given condition such as cancer and how synthetic lethality studies could greatly benefit cancer patients by suggesting drug combinations with reduced side effects.
Published on June 30, 2020
READ PUBLICATION →

Discovery of Synergistic and Antagonistic Drug Combinations against SARS-CoV-2 In Vitro.

Authors: Bobrowski T, Chen L, Eastman RT, Itkin Z, Shinn P, Chen C, Guo H, Zheng W, Michael S, Simeonov A, Hall MD, Zakharov AV, Muratov EN

Abstract: COVID-19 is undoubtedly the most impactful viral disease of the current century, afflicting millions worldwide. As yet, there is not an approved vaccine, as well as limited options from existing drugs for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro . Overall, we identified 16 synergistic and 8 antagonistic combinations, 4 of which were both synergistic and antagonistic in a dose-dependent manner. Among the 16 synergistic cases, combinations of nitazoxanide with three other compounds (remdesivir, amodiaquine and umifenovir) were the most notable, all exhibiting significant synergy against SARS-CoV-2. The combination of nitazoxanide, an FDA-approved drug, and remdesivir, FDA emergency use authorization for the treatment of COVID-19, demonstrate a strong synergistic interaction. Notably, the combination of remdesivir and hydroxychloroquine demonstrated strong antagonism. Overall, our results emphasize the importance of both drug repurposing and preclinical testing of drug combinations for potential therapeutic use against SARS-CoV-2 infections.
Published in June 2020
READ PUBLICATION →

Quantifying genetic effects on disease mediated by assayed gene expression levels.

Authors: Yao DW, O'Connor LJ, Price AL, Gusev A

Abstract: Disease variants identified by genome-wide association studies (GWAS) tend to overlap with expression quantitative trait loci (eQTLs), but it remains unclear whether this overlap is driven by gene expression levels 'mediating' genetic effects on disease. Here, we introduce a new method, mediated expression score regression (MESC), to estimate disease heritability mediated by the cis genetic component of gene expression levels. We applied MESC to GWAS summary statistics for 42 traits (average N = 323,000) and cis-eQTL summary statistics for 48 tissues from the Genotype-Tissue Expression (GTEx) consortium. Averaging across traits, only 11 +/- 2% of heritability was mediated by assayed gene expression levels. Expression-mediated heritability was enriched in genes with evidence of selective constraint and genes with disease-appropriate annotations. Our results demonstrate that assayed bulk tissue eQTLs, although disease relevant, cannot explain the majority of disease heritability.
Published in June 2020
READ PUBLICATION →

Immediate Adaptation Analysis Implicates BCL6 as an EGFR-TKI Combination Therapy Target in NSCLC.

Authors: Zhou Tran Y, Minozada R, Cao X, Johansson HJ, Branca RM, Seashore-Ludlow B, Orre LM

Abstract: Drug resistance is a major obstacle to curative cancer therapies, and increased understanding of the molecular events contributing to resistance would enable better prediction of therapy response, as well as contribute to new targets for combination therapy. Here we have analyzed the early molecular response to epidermal growth factor receptor (EGFR) inhibition using RNA sequencing data covering 13,486 genes and mass spectrometry data covering 10,138 proteins. This analysis revealed a massive response to EGFR inhibition already within the first 24 h, including significant regulation of hundreds of genes known to control downstream signaling, such as transcription factors, kinases, phosphatases and ubiquitin E3-ligases. Importantly, this response included upregulation of key genes in multiple oncogenic signaling pathways that promote proliferation and survival, such as ERBB3, FGFR2, JAK3, and BCL6, indicating an early adaptive response to EGFR inhibition. Using a library of more than 500 approved and experimental compounds in a combination therapy screen, we could show that several kinase inhibitors with targets including JAK3 and FGFR2 increased the response to EGFR inhibitors. Further, we investigated the functional impact of BCL6 upregulation in response to EGFR inhibition using siRNA-based silencing of BCL6. Proteomics profiling revealed that BCL6 inhibited transcription of multiple target genes including p53, resulting in reduced apoptosis which implicates BCL6 upregulation as a new EGFR inhibitor treatment escape mechanism. Finally, we demonstrate that combined treatment targeting both EGFR and BCL6 act synergistically in killing lung cancer cells. In conclusion, or data indicates that multiple different adaptive mechanisms may act in concert to blunt the cellular impact of EGFR inhibition, and we suggest BCL6 as a potential target for EGFR inhibitor-based combination therapy.
Published in June 2020
READ PUBLICATION →

A systems approach to infectious disease.

Authors: Eckhardt M, Hultquist JF, Kaake RM, Huttenhain R, Krogan NJ

Abstract: Ongoing social, political and ecological changes in the 21st century have placed more people at risk of life-threatening acute and chronic infections than ever before. The development of new diagnostic, prophylactic, therapeutic and curative strategies is critical to address this burden but is predicated on a detailed understanding of the immensely complex relationship between pathogens and their hosts. Traditional, reductionist approaches to investigate this dynamic often lack the scale and/or scope to faithfully model the dual and co-dependent nature of this relationship, limiting the success of translational efforts. With recent advances in large-scale, quantitative omics methods as well as in integrative analytical strategies, systems biology approaches for the study of infectious disease are quickly forming a new paradigm for how we understand and model host-pathogen relationships for translational applications. Here, we delineate a framework for a systems biology approach to infectious disease in three parts: discovery - the design, collection and analysis of omics data; representation - the iterative modelling, integration and visualization of complex data sets; and application - the interpretation and hypothesis-based inquiry towards translational outcomes.
Published on June 29, 2020
READ PUBLICATION →

DTiGEMS+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques.

Authors: Thafar MA, Olayan RS, Ashoor H, Albaradei S, Bajic VB, Gao X, Gojobori T, Essack M

Abstract: In silico prediction of drug-target interactions is a critical phase in the sustainable drug development process, especially when the research focus is to capitalize on the repositioning of existing drugs. However, developing such computational methods is not an easy task, but is much needed, as current methods that predict potential drug-target interactions suffer from high false-positive rates. Here we introduce DTiGEMS+, a computational method that predicts Drug-Target interactions using Graph Embedding, graph Mining, and Similarity-based techniques. DTiGEMS+ combines similarity-based as well as feature-based approaches, and models the identification of novel drug-target interactions as a link prediction problem in a heterogeneous network. DTiGEMS+ constructs the heterogeneous network by augmenting the known drug-target interactions graph with two other complementary graphs namely: drug-drug similarity, target-target similarity. DTiGEMS+ combines different computational techniques to provide the final drug target prediction, these techniques include graph embeddings, graph mining, and machine learning. DTiGEMS+ integrates multiple drug-drug similarities and target-target similarities into the final heterogeneous graph construction after applying a similarity selection procedure as well as a similarity fusion algorithm. Using four benchmark datasets, we show DTiGEMS+ substantially improves prediction performance compared to other state-of-the-art in silico methods developed to predict of drug-target interactions by achieving the highest average AUPR across all datasets (0.92), which reduces the error rate by 33.3% relative to the second-best performing model in the state-of-the-art methods comparison.
Published on June 28, 2020
READ PUBLICATION →

Hepatoprotective effects of Hovenia dulcis seeds against alcoholic liver injury and related mechanisms investigated via network pharmacology.

Authors: Meng X, Tang GY, Zhao CN, Liu Q, Xu XY, Cao SY

Abstract: BACKGROUND: Alcoholic liver disease (ALD) is a worldwide health problem, and natural products have been shown to improve ALD due to their antioxidant activities. Some parts of Hovenia dulcis (H. dulcis), such as roots, peduncles, and stems, provide health benefits. Nevertheless, the effects and mechanisms of H. dulcis seeds on ALD have not yet been fully elucidated. AIM: To determine H. dulcis antioxidant activity, evaluate its effects against ALD, and investigate the related mechanisms via network pharmacology. METHODS: The antioxidant activity of H. dulcis seed was determined by both ferric-reducing antioxidant power and trolox equivalent antioxidant capacity assays. The total phenolic and flavonoid contents were determined by Folin-Ciocalteu method and aluminum chloride colorimetry, respectively, and polysaccharide was determined by phenol-sulfuric acid method. The effects of H. dulcis seeds against alcoholic liver injury were investigated in mice with water extract pretreatment for 7 days followed by alcohol administration. Moreover, the mechanisms of action were explored with network pharmacology. RESULTS: The results showed that H. dulcis seeds possessed strong antioxidant activity (245.11 +/- 10.17 mumol Fe(2+)/g by ferric-reducing antioxidant power and 284.35 +/- 23.57 mumol TE/g by trolox equivalent antioxidant capacity) and contained remarkable phenols and flavonoids, as well as a few polysaccharides. H. dulcis seeds attenuated alcohol-induced oxidative liver injury, showing reduced serum alanine and aspartate aminotransferases, alkaline phosphatase, and triglyceride, elevated hepatic glutathione, increased activities of superoxide dismutase and catalase, and reduced malondialdehyde and hepatic triglyceride. The results of network pharmacology analysis indicated that kaempferol, stigmasterol, and naringenin were the main bioactive compounds in H. dulcis seeds and that modulation of oxidative stress, inflammation, gut-derived products, and apoptosis were underlying mechanisms of the protective effects of H. dulcis seeds on ALD. CONCLUSION: The results of this study demonstrate that H. dulcis seeds could be a good natural antioxidant source with protective effects on oxidative diseases such as ALD.