Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on July 25, 2020
READ PUBLICATION →

The COVID-19 Drug and Gene Set Library.

Authors: Kuleshov MV, Stein DJ, Clarke DJB, Kropiwnicki E, Jagodnik KM, Bartal A, Evangelista JE, Hom J, Cheng M, Bailey A, Zhou A, Ferguson LB, Lachmann A, Ma'ayan A

Abstract: 
Published on July 25, 2020
READ PUBLICATION →

Interplay between Cellular Metabolism and the DNA Damage Response in Cancer.

Authors: Moretton A, Loizou JI

Abstract: Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Published on July 24, 2020
READ PUBLICATION →

Learning Representations to Predict Intermolecular Interactions on Large-Scale Heterogeneous Molecular Association Network.

Authors: Yi HC, You ZH, Huang DS, Guo ZH, Chan KCC, Li Y

Abstract: Molecular components that are functionally interdependent in human cells constitute molecular association networks. Disease can be caused by disturbance of multiple molecular interactions. New biomolecular regulatory mechanisms can be revealed by discovering new biomolecular interactions. To this end, a heterogeneous molecular association network is formed by systematically integrating comprehensive associations between miRNAs, lncRNAs, circRNAs, mRNAs, proteins, drugs, microbes, and complex diseases. We propose a machine learning method for predicting intermolecular interactions, named MMI-Pred. More specifically, a network embedding model is developed to fully exploit the network behavior of biomolecules, and attribute features are also calculated. Then, these discriminative features are combined to train a random forest classifier to predict intermolecular interactions. MMI-Pred achieves an outstanding performance of 93.50% accuracy in hybrid associations prediction under 5-fold cross-validation. This work provides systematic landscape and machine learning method to model and infer complex associations between various biological components.
Published on July 24, 2020
READ PUBLICATION →

Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning.

Authors: Zeng X, Song X, Ma T, Pan X, Zhou Y, Hou Y, Zhang Z, Li K, Karypis G, Cheng F

Abstract: There have been more than 2.2 million confirmed cases and over 120000 deaths from the human coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), in the United States alone. However, there is currently a lack of proven effective medications against COVID-19. Drug repurposing offers a promising route for the development of prevention and treatment strategies for COVID-19. This study reports an integrative, network-based deep-learning methodology to identify repurposable drugs for COVID-19 (termed CoV-KGE). Specifically, we built a comprehensive knowledge graph that includes 15 million edges across 39 types of relationships connecting drugs, diseases, proteins/genes, pathways, and expression from a large scientific corpus of 24 million PubMed publications. Using Amazon's AWS computing resources and a network-based, deep-learning framework, we identified 41 repurposable drugs (including dexamethasone, indomethacin, niclosamide, and toremifene) whose therapeutic associations with COVID-19 were validated by transcriptomic and proteomics data in SARS-CoV-2-infected human cells and data from ongoing clinical trials. Whereas this study by no means recommends specific drugs, it demonstrates a powerful deep-learning methodology to prioritize existing drugs for further investigation, which holds the potential to accelerate therapeutic development for COVID-19.
Published on July 24, 2020
READ PUBLICATION →

Computational drug repurposing for the identification of SARS-CoV-2 main protease inhibitors.

Authors: Fiorucci D, Milletti E, Orofino F, Brizzi A, Mugnaini C, Corelli F

Abstract: Accepted 7 July 2020ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the known COVID-19 disease. Since currently no definitive therapies or vaccines for the SARS-CoV-2 virus are available, there is an urgent need to identify effective drugs against SARS-CoV-2 infection. One of the best-known targets available is the main protease of this virus, crucial for the processing of polyproteins codified by viral RNA. In this work, we used a computational virtual screening procedure for the repurposing of commercial drugs available in the DrugBank database as inhibitors of the SARS-CoV-2 main protease. Molecular docking calculations and molecular dynamics (MD) simulations have been applied. The computational model was validated through a self-docking procedure. The screening procedure highlighted five interesting drugs that showed a comparable or higher docking score compared to the crystallographic compound and maintained the protein binding during the MD runs. Amongst these drugs, Ritonavir has been used in clinical trials with patients affected by COVID-19 and Nelfinavir showed anti-SARS-CoV-2 activity. The five identified drugs could be evaluated experimentally as inhibitors of the SARS-CoV-2 main protease in view of a possible COVID-19 treatment. Communicated by Ramaswamy H. Sarma.
Published on July 23, 2020
READ PUBLICATION →

Drug-target interactions prediction using marginalized denoising model on heterogeneous networks.

Authors: Tang C, Zhong C, Chen D, Wang J

Abstract: BACKGROUND: Drugs achieve pharmacological functions by acting on target proteins. Identifying interactions between drugs and target proteins is an essential task in old drug repositioning and new drug discovery. To recommend new drug candidates and reposition existing drugs, computational approaches are commonly adopted. Compared with the wet-lab experiments, the computational approaches have lower cost for drug discovery and provides effective guidance in the subsequent experimental verification. How to integrate different types of biological data and handle the sparsity of drug-target interaction data are still great challenges. RESULTS: In this paper, we propose a novel drug-target interactions (DTIs) prediction method incorporating marginalized denoising model on heterogeneous networks with association index kernel matrix and latent global association. The experimental results on benchmark datasets and new compiled datasets indicate that compared to other existing methods, our method achieves higher scores of AUC (area under curve of receiver operating characteristic) and larger values of AUPR (area under precision-recall curve). CONCLUSIONS: The performance improvement in our method depends on the association index kernel matrix and the latent global association. The association index kernel matrix calculates the sharing relationship between drugs and targets. The latent global associations address the false positive issue caused by network link sparsity. Our method can provide a useful approach to recommend new drug candidates and reposition existing drugs.
Published on July 22, 2020
READ PUBLICATION →

A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions.

Authors: Jarada TN, Rokne JG, Alhajj R

Abstract: Drug repositioning is the process of identifying novel therapeutic potentials for existing drugs and discovering therapies for untreated diseases. Drug repositioning, therefore, plays an important role in optimizing the pre-clinical process of developing novel drugs by saving time and cost compared to the traditional de novo drug discovery processes. Since drug repositioning relies on data for existing drugs and diseases the enormous growth of publicly available large-scale biological, biomedical, and electronic health-related data along with the high-performance computing capabilities have accelerated the development of computational drug repositioning approaches. Multidisciplinary researchers and scientists have carried out numerous attempts, with different degrees of efficiency and success, to computationally study the potential of repositioning drugs to identify alternative drug indications. This study reviews recent advancements in the field of computational drug repositioning. First, we highlight different drug repositioning strategies and provide an overview of frequently used resources. Second, we summarize computational approaches that are extensively used in drug repositioning studies. Third, we present different computing and experimental models to validate computational methods. Fourth, we address prospective opportunities, including a few target areas. Finally, we discuss challenges and limitations encountered in computational drug repositioning and conclude with an outline of further research directions.
Published on July 22, 2020
READ PUBLICATION →

Filovirus Antiviral Activity of Cationic Amphiphilic Drugs Is Associated with Lipophilicity and Ability To Induce Phospholipidosis.

Authors: Gunesch AP, Zapatero-Belinchon FJ, Pinkert L, Steinmann E, Manns MP, Schneider G, Pietschmann T, Bronstrup M, von Hahn T

Abstract: Several cationic amphiphilic drugs (CADs) have been found to inhibit cell entry of filoviruses and other enveloped viruses. Structurally unrelated CADs may have antiviral activity, yet the underlying common mechanism and structure-activity relationship are incompletely understood. We aimed to understand how widespread antiviral activity is among CADs and which structural and physico-chemical properties are linked to entry inhibition. We measured inhibition of Marburg virus pseudoparticle (MARVpp) cell entry by 45 heterogeneous and mostly FDA-approved CADs and cytotoxicity in EA.hy926 cells. We analyzed correlation of antiviral activity with four chemical properties: pKa, hydrophobicity (octanol/water partitioning coefficient; ClogP), molecular weight, and distance between the basic group and hydrophobic ring structures. Additionally, we quantified drug-induced phospholipidosis (DIPL) of a CAD subset by flow cytometry. Structurally similar compounds (derivatives) and those with similar chemical properties but unrelated structures (analogues) to those of strong inhibitors were obtained by two in silico similarity search approaches and tested for antiviral activity. Overall, 11 out of 45 (24%) CADs inhibited MARVpp by 40% or more. The strongest antiviral compounds were dronedarone, triparanol, and quinacrine. Structure-activity relationship studies revealed highly significant correlations between antiviral activity, hydrophobicity (ClogP > 4), and DIPL. Moreover, pKa and intramolecular distance between hydrophobic and hydrophilic moieties correlated with antiviral activity but to a lesser extent. We also showed that in contrast to analogues, derivatives had antiviral activity similar to that of the seed compound dronedarone. Overall, one-quarter of CADs inhibit MARVpp entry in vitro, and antiviral activity of CADs mostly relies on their hydrophobicity yet is promoted by the individual structure.
Published on July 22, 2020
READ PUBLICATION →

From Riluzole to Dexpramipexole via Substituted-Benzothiazole Derivatives for Amyotrophic Lateral Sclerosis Disease Treatment: Case Studies.

Authors: Mignani S, Majoral JP, Desaphy JF, Lentini G

Abstract: The 1,3-benzothiazole (BTZ) ring may offer a valid option for scaffold-hopping from indole derivatives. Several BTZs have clinically relevant roles, mainly as CNS medicines and diagnostic agents, with riluzole being one of the most famous examples. Riluzole is currently the only approved drug to treat amyotrophic lateral sclerosis (ALS) but its efficacy is marginal. Several clinical studies have demonstrated only limited improvements in survival, without benefits to motor function in patients with ALS. Despite significant clinical trial efforts to understand the genetic, epigenetic, and molecular pathways linked to ALS pathophysiology, therapeutic translation has remained disappointingly slow, probably due to the complexity and the heterogeneity of this disease. Many other drugs to tackle ALS have been tested for 20 years without any success. Dexpramipexole is a BTZ structural analog of riluzole and was a great hope for the treatment of ALS. In this review, as an interesting case study in the development of a new medicine to treat ALS, we present the strategy of the development of dexpramipexole, which was one of the most promising drugs against ALS.
Published on July 21, 2020
READ PUBLICATION →

MIPDH: A Novel Computational Model for Predicting microRNA-mRNA Interactions by DeepWalk on a Heterogeneous Network.

Authors: Wong L, You ZH, Guo ZH, Yi HC, Chen ZH, Cao MY

Abstract: Analysis of miRNA-target mRNA interaction (MTI) is of crucial significance in discovering new target candidates for miRNAs. However, the biological experiments for identifying MTIs have a high false positive rate and are high-priced, time-consuming, and arduous. It is an urgent task to develop effective computational approaches to enhance the investigation of miRNA-target mRNA relationships. In this study, a novel method called MIPDH is developed for miRNA-mRNA interaction prediction by using DeepWalk on a heterogeneous network. More specifically, MIPDH extracts two kinds of features, in which a biological behavior feature is learned using a network embedding algorithm on a constructed heterogeneous network derived from 17 kinds of associations among drug, disease, and 6 kinds of biomolecules, and the attribute feature is learned using the k-mer method on sequences of miRNAs and target mRNAs. Then, a random forest classifier is trained on the features combined with the biological behavior feature and attribute feature. When implementing a 5-fold cross-validation experiment, MIPDH achieved an average accuracy, sensitivity, specificity and AUC of 75.85, 74.37, 77.33%, and 0.8044, respectively. To further evaluate the performance of MIPDH, other classifiers and feature descriptors are conducted for comparisons. MIPDH can achieve a better performance. Additionally, case studies on hsa-miR-106b-5p, hsa-let-7d-5p, and hsa-let-7e-5p are also implemented. As a result, 14, 9, and 9 out of the top 15 targets that interacted with these miRNAs were verified using the experimental literature or other databases. All these prediction results indicate that MIPDH is an effective method for predicting miRNA-target mRNA interactions.