Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in July 2020
READ PUBLICATION →

Identification of potential inhibitors of three key enzymes of SARS-CoV2 using computational approach.

Authors: Iftikhar H, Ali HN, Farooq S, Naveed H, Shahzad-Ul-Hussan S

Abstract: The recent outbreak of coronavirus disease-19 (COVID-19) continues to drastically affect healthcare throughout the world. To date, no approved treatment regimen or vaccine is available to effectively attenuate or prevent the infection. Therefore, collective and multidisciplinary efforts are needed to identify new therapeutics or to explore effectiveness of existing drugs and drug-like small molecules against SARS-CoV-2 for lead identification and repurposing prospects. This study addresses the identification of small molecules that specifically bind to any of the three essential proteins (RdRp, 3CL-protease and helicase) of SARS-CoV-2. By applying computational approaches we screened a library of 4574 compounds also containing FDA-approved drugs against these viral proteins. Shortlisted hits from initial screening were subjected to iterative docking with the respective proteins. Ranking score on the basis of binding energy, clustering score, shape complementarity and functional significance of the binding pocket was applied to identify the binding compounds. Finally, to minimize chances of false positives, we performed docking of the identified molecules with 100 irrelevant proteins of diverse classes thereby ruling out the non-specific binding. Three FDA-approved drugs showed binding to 3CL-protease either at the catalytic pocket or at an allosteric site related to functionally important dimer formation. A drug-like molecule showed binding to RdRp in its catalytic pocket blocking the key catalytic residues. Two other drug-like molecules showed specific interactions with helicase at a key domain involved in catalysis. This study provides lead drugs or drug-like molecules for further in vitro and clinical investigation for drug repurposing and new drug development prospects.
Published on July 31, 2020
READ PUBLICATION →

Identification of key genes and pathways involved in vitiligo development based on integrated analysis.

Authors: Lei Z, Yu S, Ding Y, Liang J, Halifu Y, Xiang F, Zhang D, Wang H, Hu W, Li T, Wang Y, Zou X, Zhang K, Kang X

Abstract: Vitiligo is a chronic skin condition lack of melanocytes. However, researches on the aetiology and pathogenesis of vitiligo are still under debate. This study aimed to explore the key genes and pathways associated with occurrence and development of vitiligo.Weighted gene coexpression network analysis (WGCNA) was applied to reanalyze the gene expression dataset GSE65127 systematically. Functional enrichments of these modules were carried out at gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set variation analysis (GSVA), and gene set enrichment analysis (GSEA). Then, a map of regulatory network was delineated according to pivot analysis and drug prediction. In addition, hub genes and crucial pathways were validated by an independent dataset GSE75819. The expressions of hub genes in modules were also tested by quantitative real-time polymerase chain reaction (qRT-PCR).Eight coexpressed modules were identified by WGCNA based on 5794 differentially expressed genes of vitiligo. Three modules were found to be significantly correlated with Lesional, Peri-Lesional, and Non-Lesional, respectively. The persistent maladjusted genes included 269 upregulated genes and 82 downregulated genes. The enrichments showed module genes were implicated in immune response, p53 signaling pathway, etc. According to GSEA and GSVA, dysregulated pathways were activated incessantly from Non-Lesional to Peri-Lesional and then to Lesional, 4 of which were verified by an independent dataset GSE75819. Finally, 42 transcription factors and 228 drugs were spotted. Focusing on the persistent maladjusted genes, a map of regulatory network was delineated. Hub genes (CACTIN, DCTN1, GPR143, HADH, MRPL47, NKTR, NUF2) and transcription factors (ITGAV, SYK, PDPK1) were validated by an independent dataset GSE75819. In addition, hub genes (CACTIN, DCTN1, GPR143, MRPL47, NKTR) were also confirmed by qRT-PCR.The present study, at least, might provide an integrated and in-depth insight for exploring the underlying mechanism of vitiligo and predicting potential diagnostic biomarkers and therapeutic targets.
Published in July 2020
READ PUBLICATION →

Knowledge-Based Biomedical Data Science.

Authors: Callahan TJ, Tripodi IJ, Pielke-Lombardo H, Hunter LE

Abstract: Knowledge-based biomedical data science involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey recent progress in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as progress on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing to construct knowledge graphs, and the expansion of novel knowledge-based approaches to clinical and biological domains.
Published in July 2020
READ PUBLICATION →

The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods.

Authors: Krebs A, van Vugt-Lussenburg BMA, Waldmann T, Albrecht W, Boei J, Ter Braak B, Brajnik M, Braunbeck T, Brecklinghaus T, Busquet F, Dinnyes A, Dokler J, Dolde X, Exner TE, Fisher C, Fluri D, Forsby A, Hengstler JG, Holzer AK, Janstova Z, Jennings P, Kisitu J, Kobolak J, Kumar M, Limonciel A, Lundqvist J, Mihalik B, Moritz W, Pallocca G, Ulloa APC, Pastor M, Rovida C, Sarkans U, Schimming JP, Schmidt BZ, Stober R, Strassfeld T, van de Water B, Wilmes A, van der Burg B, Verfaillie CM, von Hellfeld R, Vrieling H, Vrijenhoek NG, Leist M

Abstract: Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.
Published on July 30, 2020
READ PUBLICATION →

Long non-coding RNAs in regulation of adipogenesis and adipose tissue function.

Authors: Squillaro T, Peluso G, Galderisi U, Di Bernardo G

Abstract: Complex interaction between genetics, epigenetics, environment, and nutrition affect the physiological activities of adipose tissues and their dysfunctions, which lead to several metabolic diseases including obesity or type 2 diabetes. Here, adipogenesis appears to be a process characterized by an intricate network that involves many transcription factors and long noncoding RNAs (lncRNAs) that regulate gene expression. LncRNAs are being investigated to determine their contribution to adipose tissue development and function. LncRNAs possess multiple cellular functions, and they regulate chromatin remodeling, along with transcriptional and post-transcriptional events; in this way, they affect gene expression. New investigations have demonstrated the pivotal role of these molecules in modulating white and brown/beige adipogenic tissue development and activity. This review aims to provide an update on the role of lncRNAs in adipogenesis and adipose tissue function to promote identification of new drug targets for treating obesity and related metabolic diseases.
Published on July 30, 2020
READ PUBLICATION →

Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19.

Authors: Norinder U, Tuck A, Norgren K, Munic Kos V

Abstract: Given the speed of viral infection spread, repurposing of existing drugs has been given the highest priority in combating the ongoing COVID-19 pandemic. Only drugs that are already registered or close to registration, and therefore have passed lengthy safety assessments, have a chance to be tested in clinical trials and reach patients quickly enough to help in the current disease outbreak. Here, we have reviewed available evidence and possible ways forward to identify already existing pharmaceuticals displaying modest broad-spectrum antiviral activity which is likely linked to their high accumulation in cells. Several well studied examples indicate that these drugs accumulate in lysosomes, endosomes and biological membranes in general, and thereby interfere with endosomal pathway and intracellular membrane trafficking crucial for viral infection. With the aim to identify other lysosomotropic drugs with possible inherent antiviral activity, we have applied a set of clear physicochemical, pharmacokinetic and molecular criteria on 530 existing drugs. In addition to publicly available data, we have also used our in silico model for the prediction of accumulation in lysosomes and endosomes. By this approach we have identified 36 compounds with possible antiviral effects, also against coronaviruses. For 14 of them evidence of broad-spectrum antiviral activity has already been reported, adding support to the value of this approach. Presented pros and cons, knowledge gaps and methods to identify lysosomotropic antivirals, can help in the evaluation of many drugs currently in clinical trials considered for repurposing to target COVID-19, as well as open doors to finding more potent and safer alternatives.
Published on July 28, 2020
READ PUBLICATION →

Structure-based drug repositioning over the human TMPRSS2 protease domain: search for chemical probes able to repress SARS-CoV-2 Spike protein cleavages.

Authors: Singh N, Decroly E, Khatib AM, Villoutreix BO

Abstract: In December 2019, a new coronavirus was identified in the Hubei province of central china and named SARS-CoV-2. This new virus induces COVID-19, a severe respiratory disease with high death rate. A putative target to interfere with the virus is the host transmembrane serine protease family member II (TMPRSS2). This enzyme is critical for the entry of coronaviruses into human cells by cleaving and activating the spike protein (S) of SARS-CoV-2. Repositioning approved, investigational and experimental drugs on the serine protease domain of TMPRSS2 could thus be valuable. There is no experimental structure for TMPRSS2 but it is possible to develop quality structural models for the serine protease domain using comparative modeling strategies as such domains are highly structurally conserved. Beside the TMPRSS2 catalytic site, we predicted on our structural models a main exosite that could be important for the binding of protein partners and/or substrates. To block the catalytic site or the exosite of TMPRSS2 we used structure-based virtual screening computations and two different collections of approved, investigational and experimental drugs. We propose a list of 156 molecules that could bind to the catalytic site and 100 compounds that may interact with the exosite. These small molecules should now be tested in vitro to gain novel insights over the roles of TMPRSS2 or as starting point for the development of second generation analogs.
Published on July 28, 2020
READ PUBLICATION →

Genetically determined blood pressure, antihypertensive drug classes, and risk of stroke subtypes.

Authors: Georgakis MK, Gill D, Webb AJS, Evangelou E, Elliott P, Sudlow CLM, Dehghan A, Malik R, Tzoulaki I, Dichgans M

Abstract: OBJECTIVE: We employed Mendelian randomization to explore whether the effects of blood pressure (BP) and BP-lowering through different antihypertensive drug classes on stroke risk vary by stroke etiology. METHODS: We selected genetic variants associated with systolic and diastolic BP and BP-lowering variants in genes encoding antihypertensive drug targets from genome-wide association studies (GWAS) on 757,601 individuals. Applying 2-sample Mendelian randomization, we examined associations with any stroke (67,162 cases; 454,450 controls), ischemic stroke and its subtypes (large artery, cardioembolic, small vessel stroke), intracerebral hemorrhage (ICH, deep and lobar), and the related small vessel disease phenotype of white matter hyperintensities (WMH). RESULTS: Genetic predisposition to higher systolic and diastolic BP was associated with higher risk of any stroke, ischemic stroke, and ICH. We found associations between genetically determined BP and all ischemic stroke subtypes with a higher risk of large artery and small vessel stroke compared to cardioembolic stroke, as well as associations with deep, but not lobar ICH. Genetic proxies for calcium channel blockers, but not beta-blockers, were associated with lower risk of any stroke and ischemic stroke. Proxies for calcium channel blockers showed particularly strong associations with small vessel stroke and the related radiologic phenotype of WMH. CONCLUSIONS: This study supports a causal role of hypertension in all major stroke subtypes except lobar ICH. We find differences in the effects of BP and BP-lowering through antihypertensive drug classes between stroke subtypes and identify calcium channel blockade as a promising strategy for preventing manifestations of cerebral small vessel disease.
Published on July 27, 2020
READ PUBLICATION →

Virus-CKB: an integrated bioinformatics platform and analysis resource for COVID-19 research.

Authors: Feng Z, Chen M, Liang T, Shen M, Chen H, Xie XQ

Abstract: Given the scale and rapid spread of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for medicines that can help before vaccines are available. In this study, we present a viral-associated disease-specific chemogenomics knowledgebase (Virus-CKB) and apply our computational systems pharmacology-target mapping to rapidly predict the FDA-approved drugs which can quickly progress into clinical trials to meet the urgent demand of the COVID-19 outbreak. Virus-CKB reuses the underlying platform of our DAKB-GPCRs but adds new features like multiple-compound support, multi-cavity protein support and customizable symbol display. Our one-stop computing platform describes the chemical molecules, genes and proteins involved in viral-associated diseases regulation. To date, Virus-CKB archived 65 antiviral drugs in the market, 107 viral-related targets with 189 available 3D crystal or cryo-EM structures and 2698 chemical agents reported for these target proteins. Moreover, Virus-CKB is implemented with web applications for the prediction of the relevant protein targets and analysis and visualization of the outputs, including HTDocking, TargetHunter, BBB predictor, NGL Viewer, Spider Plot, etc. The Virus-CKB server is accessible at https://www.cbligand.org/g/virus-ckb.
Published on July 26, 2020
READ PUBLICATION →

In Silico Insights into the SARS CoV-2 Main Protease Suggest NADH Endogenous Defences in the Control of the Pandemic Coronavirus Infection.

Authors: Martorana A, Gentile C, Lauria A

Abstract: COVID-19 is a pandemic health emergency faced by the entire world. The clinical treatment of the severe acute respiratory syndrome (SARS) CoV-2 is currently based on the experimental administration of HIV antiviral drugs, such as lopinavir, ritonavir, and remdesivir (a nucleotide analogue used for Ebola infection). This work proposes a repurposing process using a database containing approximately 8000 known drugs in synergy structure- and ligand-based studies by means of the molecular docking and descriptor-based protocol. The proposed in silico findings identified new potential SARS CoV-2 main protease (M(PRO)) inhibitors that fit in the catalytic binding site of SARS CoV-2 M(PRO). Several selected structures are NAD-like derivatives, suggesting a relevant role of these molecules in the modulation of SARS CoV-2 infection in conditions of cell chronic oxidative stress. Increased catabolism of NAD(H) during protein ribosylation in the DNA damage repair process may explain the greater susceptibility of the elderly population to the acute respiratory symptoms of COVID-19. The molecular modelling studies proposed herein agree with this hypothesis.