Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2019
READ PUBLICATION →

DeepBindRG: a deep learning based method for estimating effective protein-ligand affinity.

Authors: Zhang H, Liao L, Saravanan KM, Yin P, Wei Y

Abstract: Proteins interact with small molecules to modulate several important cellular functions. Many acute diseases were cured by small molecule binding in the active site of protein either by inhibition or activation. Currently, there are several docking programs to estimate the binding position and the binding orientation of protein-ligand complex. Many scoring functions were developed to estimate the binding strength and predict the effective protein-ligand binding. While the accuracy of current scoring function is limited by several aspects, the solvent effect, entropy effect, and multibody effect are largely ignored in traditional machine learning methods. In this paper, we proposed a new deep neural network-based model named DeepBindRG to predict the binding affinity of protein-ligand complex, which learns all the effects, binding mode, and specificity implicitly by learning protein-ligand interface contact information from a large protein-ligand dataset. During the initial data processing step, the critical interface information was preserved to make sure the input is suitable for the proposed deep learning model. While validating our model on three independent datasets, DeepBindRG achieves root mean squared error (RMSE) value of pKa (-logKd or -logKi) about 1.6-1.8 and R value around 0.5-0.6, which is better than the autodock vina whose RMSE value is about 2.2-2.4 and R value is 0.42-0.57. We also explored the detailed reasons for the performance of DeepBindRG, especially for several failed cases by vina. Furthermore, DeepBindRG performed better for four challenging datasets from DUD.E database with no experimental protein-ligand complexes. The better performance of DeepBindRG than autodock vina in predicting protein-ligand binding affinity indicates that deep learning approach can greatly help with the drug discovery process. We also compare the performance of DeepBindRG with a 4D based deep learning method "pafnucy", the advantage and limitation of both methods have provided clues for improving the deep learning based protein-ligand prediction model in the future.
Published in 2019
READ PUBLICATION →

A Systems Pharmacology-Based Study of the Molecular Mechanisms of San Cao Decoction for Treating Hypertension.

Authors: Ma C, Zhai C, Xu T, Lu F, Zhang S, Li C, Wang Q, Cheng F, Wang X

Abstract: Traditional Chinese medicine (TCM) has a longstanding history and has gained widespread clinical applications. San Cao Decoction (SCD) is an experience prescription first formulated by Prof. Duzhou Liu. We previously demonstrated its antihypertensive effects; however, to systematically explain the underlying mechanisms of action, we employed a systems pharmacology approach for pharmacokinetic screening and target prediction by constructing protein-protein interaction networks of hypertension-related and putative SCD-related targets, and Database for Annotation, Visualization, and Integrated Discovery enrichment analysis. We identified 123 active compounds in SCD and 116 hypertension-related targets. Furthermore, the enrichment analysis of the drug-target network showed that SCD acts in a multidimensional manner to regulate PI3K-Akt-endothelial nitric oxide synthase signaling to maintain blood pressure. Our results highlighted the molecular mechanisms of antihypertensive actions of medicinal herbs at a systematic level.
Published in 2019
READ PUBLICATION →

In Vivo Metabolism of Ibuprofen in Growing Conventional Pigs: A Pharmacokinetic Approach.

Authors: Millecam J, De Baere S, Croubels S, Devreese M

Abstract: The juvenile conventional pig has been suggested as a preclinical animal model to evaluate pharmacokinetic (PK), pharmacodynamic (PD), and safety parameters in children. However, a lot of developmental changes in pig physiology still need to be unraveled. While the in vitro ontogeny of pig biotransformation enzymes is getting more attention in literature, the in vivo developmental changes have not yet been investigated. Therefore, the aim of the current study was to evaluate the biotransformation of ibuprofen (IBU) in conventional pigs aged 1 week, 4 weeks, 8 weeks, and 6-7 months after a single intravenous and oral administration of 5 mg/kg body weight (BW) of IBU, using a PK approach in a crossover design for each age group. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to determine 2-hydroxyibuprofen (2OH-IBU), carboxyibuprofen (COOH-IBU), and ibuprofen glucuronide (IBU-GlcA) in pig plasma. All three metabolites could be quantified in plasma and the following PK parameters were determined: C max, T max, AUC0-->6h, area under plasma concentration-time curve (AUC) ratio between parent drug and metabolite, and the absolute oral bioavailability of the parent drug IBU. The plasma concentrations of the metabolites were always lower than those of IBU. The bioavailability was high, indicating limited pre-systemic biotransformation. The AUC ratio of 2OH-IBU and COOH-IBU/IBU showed a significant increase at 4 weeks of age compared to the 1-week-old and 6- to 7-month-old pigs. Interestingly, the IBU-GlcA/IBU AUC ratio did not change with age. The present study demonstrated that the main metabolites of IBU in human are also present in growing pigs. The oxidative phase I metabolism of IBU in growing conventional pigs did change with age. In contrast, age did not seem to affect the glucuronidation capacity of IBU in conventional pigs, although more studies with other substrate drugs are needed to confirm this.
Published in December 2019
READ PUBLICATION →

Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms.

Authors: Bachtiar M, Ooi BNS, Wang J, Jin Y, Tan TW, Chong SS, Lee CGL

Abstract: Drug response variations amongst different individuals/populations are influenced by several factors including allele frequency differences of single nucleotide polymorphisms (SNPs) that functionally affect drug-response genes. Here, we aim to identify drugs that potentially exhibit population differences in response using SNP data mining and analytics. Ninety-one pairwise-comparisons of >22,000,000 SNPs from the 1000 Genomes Project, across 14 different populations, were performed to identify 'population-differentiated' SNPs (pdSNPs). Potentially-functional pdSNPs (pf-pdSNPs) were then selected, mapped into genes, and integrated with drug-gene databases to identify 'population-differentiated' drugs enriched with genes carrying pf-pdSNPs. 1191 clinically-approved drugs were found to be significantly enriched (Z > 2.58) with genes carrying SNPs that were differentiated in one or more population-pair comparisons. Thirteen drugs were found to be enriched with such differentiated genes across all 91 population-pairs. Notably, 82% of drugs, which were previously reported in the literature to exhibit population differences in response were also found by this method to contain a significant enrichment of population specific differentiated SNPs. Furthermore, drugs with genetic testing labels, or those suspected to cause adverse reactions, contained a significantly larger number (P < 0.01) of population-pairs with enriched pf-pdSNPs compared with those without these labels. This pioneering effort at harnessing big-data pharmacogenomics to identify 'population differentiated' drugs could help to facilitate data-driven decision-making for a more personalized medicine.
Published in 2019
READ PUBLICATION →

Leveraging Big Data to Transform Drug Discovery.

Authors: Glicksberg BS, Li L, Chen R, Dudley J, Chen B

Abstract: The surge of public disease and drug-related data availability has facilitated the application of computational methodologies to transform drug discovery. In the current chapter, we outline and detail the various resources and tools one can leverage in order to perform such analyses. We further describe in depth the in silico workflows of two recent studies that have identified possible novel indications of existing drugs. Lastly, we delve into the caveats and considerations of this process to enable other researchers to perform rigorous computational drug discovery experiments of their own.
Published in 2019
READ PUBLICATION →

The integration of pharmacophore-based 3D QSAR modeling and virtual screening in safety profiling: A case study to identify antagonistic activities against adenosine receptor, A2A, using 1,897 known drugs.

Authors: Fan F, Toledo Warshaviak D, Hamadeh HK, Dunn RT 2nd

Abstract: Safety pharmacology screening against a wide range of unintended vital targets using in vitro assays is crucial to understand off-target interactions with drug candidates. With the increasing demand for in vitro assays, ligand- and structure-based virtual screening approaches have been evaluated for potential utilization in safety profiling. Although ligand based approaches have been actively applied in retrospective analysis or prospectively within well-defined chemical space during the early discovery stage (i.e., HTS screening and lead optimization), virtual screening is rarely implemented in later stage of drug discovery (i.e., safety). Here we present a case study to evaluate ligand-based 3D QSAR models built based on in vitro antagonistic activity data against adenosine receptor 2A (A2A). The resulting models, obtained from 268 chemically diverse compounds, were used to test a set of 1,897 chemically distinct drugs, simulating the real-world challenge of safety screening when presented with novel chemistry and a limited training set. Due to the unique requirements of safety screening versus discovery screening, the limitations of 3D QSAR methods (i.e., chemotypes, dependence on large training set, and prone to false positives) are less critical than early discovery screen. We demonstrated that 3D QSAR modeling can be effectively applied in safety assessment prior to in vitro assays, even with chemotypes that are drastically different from training compounds. It is also worth noting that our model is able to adequately make the mechanistic distinction between agonists and antagonists, which is important to inform subsequent in vivo studies. Overall, we present an in-depth analysis of the appropriate utilization and interpretation of pharmacophore-based 3D QSAR models for safety screening.
Published in 2019
READ PUBLICATION →

A Proteotranscriptomic-Based Computational Drug-Repositioning Method for Alzheimer's Disease.

Authors: Lee SY, Song MY, Kim D, Park C, Park DK, Kim DG, Yoo JS, Kim YH

Abstract: Numerous clinical trials of drug candidates for Alzheimer's disease (AD) have failed, and computational drug repositioning approaches using omics data have been proposed as effective alternative approaches to the discovery of drug candidates. However, little multi-omics data is available for AD, due to limited availability of brain tissues. Even if omics data exist, systematic drug repurposing study for AD has suffered from lack of big data, insufficient clinical information, and difficulty in data integration on account of sample heterogeneity derived from poor diagnosis or shortage of qualified post-mortem tissue. In this study, we developed a proteotranscriptomic-based computational drug repositioning method named Drug Repositioning Perturbation Score/Class (DRPS/C) based on inverse associations between disease- and drug-induced gene and protein perturbation patterns, incorporating pharmacogenomic knowledge. We constructed a Drug-induced Gene Perturbation Signature Database (DGPSD) comprised of 61,019 gene signatures perturbed by 1,520 drugs from the Connectivity Map (CMap) and the L1000 CMap. Drugs were classified into three DRPCs (High, Intermediate, and Low) according to DRPSs that were calculated using drug- and disease-induced gene perturbation signatures from DGPSD and The Cancer Genome Atlas (TCGA), respectively. The DRPS/C method was evaluated using the area under the ROC curve, with a prescribed drug list from TCGA as the gold standard. Glioblastoma had the highest AUC. To predict anti-AD drugs, DRPS were calculated using DGPSD and AD-induced gene/protein perturbation signatures generated from RNA-seq, microarray and proteomic datasets in the Synapse database, and the drugs were classified into DRPCs. We predicted 31 potential anti-AD drug candidates commonly belonged to high DRPCs of transcriptomic and proteomic signatures. Of these, four drugs classified into the nervous system group of Anatomical Therapeutic Chemical (ATC) system are voltage-gated sodium channel blockers (bupivacaine, topiramate) and monamine oxidase inhibitors (selegiline, iproniazid), and their mechanism of action was inferred from a potential anti-AD drug perspective. Our approach suggests a shortcut to discover new efficacy of drugs for AD.
Published in 2019
READ PUBLICATION →

HNCDB: An Integrated Gene and Drug Database for Head and Neck Cancer.

Authors: Zhang Q, Li X, Su X, Zhang H, Wang H, Yin S, Pei X, Yang A, Zuo Z

Abstract: Head and neck cancer (HNC) is the sixth most common cancer worldwide. Over the last decade, an enormous amount of well-annotated gene and drug data has accumulated for HNC. However, a comprehensive repository is not yet available. Here, we constructed the Head and Neck Cancer Database (HNCDB: http://hncdb.cancerbio.info) using text mining followed by manual curation of the literature to collect reliable information on the HNC-related genes and drugs. The high-throughput gene expression data for HNC were also integrated into HNCDB. HNCDB includes the following three separate but closely related components: "HNC GENE," "Connectivity Map," and "ANALYSIS." The "HNC GENE" component contains comprehensive information for the 1,173 HNC-related genes manually curated from 2,564 publications. The "Connectivity Map" includes information on the potential connections between the 176 drugs manually curated from 2,032 publications and the 1,173 HNC-related genes. The "ANALYSIS" component allows users to conduct correlation, differential expression, and survival analyses in the 2,403 samples from 78 HNC gene expression datasets. Taken together, we believe that HNCDB will be of significant benefit for the HNC community and promote further advances for precision medicine research on HNC.
Published in 2019
READ PUBLICATION →

Examining Socioeconomic and Computational Aspects of Vaccine Pharmacovigilance.

Authors: Soldatou V, Soldatos A, Soldatos T

Abstract: Background: Vaccine pharmacovigilance relates to the detection of adverse events, their assessment, understanding, and prevention, and communication of their risk to the public. These activities can be tedious and long lasting for regulatory authority scientists and may be affected by community practices and public health policies. To better understand underlying challenges, we examined vaccine adverse event reports, assessed whether data-driven techniques can provide additional insight in safety characterization, and wondered on the impact of socioeconomic parameters. Methods: First, we integrated VAERS content with additional sources of drug and molecular data and examined reaction and outcome occurrence by using disproportionality metrics and enrichment analysis. Second, we reviewed social and behavioral determinants that may affect vaccine pharmacovigilance aspects. Results: We describe our experience in processing more than 607000 vaccine adverse event reports and report on the challenges to integrate more than 95500 VAERS medication narratives with structured information about drugs and other therapeutics or supplements. We found that only 12.6% of events were serious, while 8.97% referred to polypharmacy cases. Exacerbation of serious clinical patient outcomes was observed in 8.88% VAERS cases in which drugs may interact with vaccinations or with each other, regardless of vaccine activity interference. Furthermore, we characterized the symptoms reported in those cases and summarized reaction occurrence among vaccine-types. Last, we examine socioeconomic parameters and cost-management features, explore adverse event reporting trends, and highlight perspectives relating to the use and development of digital services, especially in the context of personalized and collaborative health-care. Conclusions: This work provides an informative review of VAERS, identifies challenges and limitations in the processing of vaccine adverse event data, and calls for the better understanding of the socioeconomic landscape pertaining vaccine safety concerns. We expect that adoption of computational techniques for integrated safety assessment and interpretation is key not only to pharmacovigilance practice but also to stakeholders from the entire healthcare system.
Published in 2019
READ PUBLICATION →

Computational drug repurposing for inflammatory bowel disease using genetic information.

Authors: Grenier L, Hu P

Abstract: As knowledge of the genetics behind inflammatory bowel disease (IBD) has continually improved, there has been a demand for methods that can use this data in a clinically significant way. Genome-wide association analyses for IBD have identified 232 risk genetic loci for the disorder. While identification of these risk loci enriches our understanding of the underlying biology of the disorder, their identification does not serve a clinical purpose. A potential use of this genetic information is to look for potential IBD drugs that target these loci in a procedure known as drug repurposing. The demand for new drug treatments for IBD is high due to the side effects and high costs of current treatments. We hypothesize that IBD genetic variants obtained from GWAS and the candidate genes prioritized from the variants have a causal relationship with IBD drug targets. A computational drug repositioning study was done due to its efficiency and inexpensiveness compared to traditional in vitro or biochemical approaches. Our approach for drug repurposing was multi-layered; it not only focused on the interactions between drugs and risk IBD genes, but also the interactions between drugs and all of the biological pathways the risk genes are involved in. We prioritized IBD candidate genes using identified genetic variants and identified potential drug targets and drugs that can be potentially repositioned or developed for IBD using the identified candidate genes. Our analysis strategy can be applied to repurpose drugs for other complex diseases using their risk genes identified from genetic analysis.