Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on March 25, 2019
READ PUBLICATION →

Community-driven roadmap for integrated disease maps.

Authors: Ostaszewski M, Gebel S, Kuperstein I, Mazein A, Zinovyev A, Dogrusoz U, Hasenauer J, Fleming RMT, Le Novere N, Gawron P, Ligon T, Niarakis A, Nickerson D, Weindl D, Balling R, Barillot E, Auffray C, Schneider R

Abstract: The Disease Maps Project builds on a network of scientific and clinical groups that exchange best practices, share information and develop systems biomedicine tools. The project aims for an integrated, highly curated and user-friendly platform for disease-related knowledge. The primary focus of disease maps is on interconnected signaling, metabolic and gene regulatory network pathways represented in standard formats. The involvement of domain experts ensures that the key disease hallmarks are covered and relevant, up-to-date knowledge is adequately represented. Expert-curated and computer readable, disease maps may serve as a compendium of knowledge, allow for data-supported hypothesis generation or serve as a scaffold for the generation of predictive mathematical models. This article summarizes the 2nd Disease Maps Community meeting, highlighting its important topics and outcomes. We outline milestones on the roadmap for the future development of disease maps, including creating and maintaining standardized disease maps; sharing parts of maps that encode common human disease mechanisms; providing technical solutions for complexity management of maps; and Web tools for in-depth exploration of such maps. A dedicated discussion was focused on mathematical modeling approaches, as one of the main goals of disease map development is the generation of mathematically interpretable representations to predict disease comorbidity or drug response and to suggest drug repositioning, altogether supporting clinical decisions.
Published on March 20, 2019
READ PUBLICATION →

Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors.

Authors: Di Pizio A, Behrens M, Krautwurst D

Abstract: G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules.
Published on March 20, 2019
READ PUBLICATION →

Selective Estrogen Receptor Modulators Enhance CNS Remyelination Independent of Estrogen Receptors.

Authors: Rankin KA, Mei F, Kim K, Shen YA, Mayoral SR, Desponts C, Lorrain DS, Green AJ, Baranzini SE, Chan JR, Bove R

Abstract: A significant unmet need for patients with multiple sclerosis (MS) is the lack of U.S. Food and Drug Administration (FDA)-approved remyelinating therapies. We have identified a compelling remyelinating agent, bazedoxifene (BZA), a European Medicines Agency (EMA)-approved (and FDA-approved in combination with conjugated estrogens) selective estrogen receptor (ER) modulator (SERM) that could move quickly from bench to bedside. This therapy stands out as a tolerable alternative to previously identified remyelinating agents and other candidates within this family. Using an unbiased high-throughput screen, with subsequent validation in both murine and human oligodendrocyte precursor cells (OPCs) and coculture systems, we find that BZA enhances differentiation of OPCs into functional oligodendrocytes. Using an in vivo murine model of focal demyelination, we find that BZA enhances OPC differentiation and remyelination. Of critical importance, we find that BZA acts independently of its presumed target, the ER, in both in vitro and in vivo systems. Using a massive computational data integration approach, we independently identify six possible candidate targets through which SERMs may mediate their effect on remyelination. Of particular interest, we identify EBP (encoding 3beta-hydroxysteroid-Delta8,Delta7-isomerase), a key enzyme in the cholesterol biosynthesis pathway, which was previously implicated as a target for remyelination. These findings provide valuable insights into the implications for SERMs in remyelination for MS and hormonal research at large.SIGNIFICANCE STATEMENT Therapeutics targeted at remyelination failure, which results in axonal degeneration and ultimately disease progression, represent a large unmet need in the multiple sclerosis (MS) population. Here, we have validated a tolerable European Medicines Agency-approved (U.S. Food and Drug Administration-approved in combination with conjugated estrogens) selective estrogen receptor (ER) modulator (SERM), bazedoxifene (BZA), as a potent agent of oligodendrocyte precursor cell (OPC) differentiation and remyelination. SERMs, which were developed as nuclear ER-alpha and ER-beta agonists/antagonists, have previously been implicated in remyelination and neuroprotection, following a heavy focus on estrogens with underwhelming and conflicting results. We show that nuclear ERs are not required for SERMs to mediate their potent effects on OPC differentiation and remyelination in vivo and highlight EBP, an enzyme in the cholesterol biosynthesis pathway that could potentially act as a target for SERMs.
Published on March 19, 2019
READ PUBLICATION →

Adverse Event Circumstances and the Case of Drug Interactions.

Authors: Soldatos TG, Jackson DB

Abstract: Adverse events are a common and for the most part unavoidable consequence of therapeutic intervention. Nevertheless, available tomes of such data now provide us with an invaluable opportunity to study the relationship between human phenotype and drug-induced protein perturbations within a patient system. Deciphering the molecular basis of such adverse responses is not only paramount to the development of safer drugs but also presents a unique opportunity to dissect disease systems in search of novel response biomarkers, drug targets, and efficacious combination therapies. Inspired by the potential applications of this approach, we first examined adverse event circumstances reported in FAERS and then performed a molecular level interrogation of cancer patient adverse events to investigate the prevalence of drug-drug interactions in the context of patient responses. We discuss avoidable and/or preventable cases and how molecular analytics can help optimize therapeutic use of co-medications. While up to one out of three adverse events in this dataset might be explicable by iatrogenic, patient, and product/device related factors, almost half of the patients in FAERS received multiple drugs and one in four may have experienced effects attributable to drug interactions.
Published on March 18, 2019
READ PUBLICATION →

Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments.

Authors: Almenar-Perez E, Sanchez-Fito T, Ovejero T, Nathanson L, Oltra E

Abstract: Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are diseases of unknown etiology presenting complex and often overlapping symptomatology. Despite promising advances on the study of miRNomes of these diseases, no validated molecular diagnostic biomarker yet exists. Since FM and ME/CFS patient treatments commonly include polypharmacy, it is of concern that biomarker miRNAs are masked by drug interactions. Aiming at discriminating between drug-effects and true disease-associated differential miRNA expression, we evaluated the potential impact of commonly prescribed drugs on disease miRNomes, as reported by the literature. By using the web search tools SM2miR, Pharmaco-miR, and repoDB, we found a list of commonly prescribed drugs that impact FM and ME/CFS miRNomes and therefore could be interfering in the process of biomarker discovery. On another end, disease-associated miRNomes may incline a patient's response to treatment and toxicity. Here, we explored treatments for diseases in general that could be affected by FM and ME/CFS miRNomes, finding a long list of them, including treatments for lymphoma, a type of cancer affecting ME/CFS patients at a higher rate than healthy population. We conclude that FM and ME/CFS miRNomes could help refine pharmacogenomic/pharmacoepigenomic analysis to elevate future personalized medicine and precision medicine programs in the clinic.
Published on March 18, 2019
READ PUBLICATION →

A Platform of Synthetic Lethal Gene Interaction Networks Reveals that the GNAQ Uveal Melanoma Oncogene Controls the Hippo Pathway through FAK.

Authors: Feng X, Arang N, Rigiracciolo DC, Lee JS, Yeerna H, Wang Z, Lubrano S, Kishore A, Pachter JA, Konig GM, Maggiolini M, Kostenis E, Schlaepfer DD, Tamayo P, Chen Q, Ruppin E, Gutkind JS

Abstract: Activating mutations in GNAQ/GNA11, encoding Galphaq G proteins, are initiating oncogenic events in uveal melanoma (UM). However, there are no effective therapies for UM. Using an integrated bioinformatics pipeline, we found that PTK2, encoding focal adhesion kinase (FAK), represents a candidate synthetic lethal gene with GNAQ activation. We show that Galphaq activates FAK through TRIO-RhoA non-canonical Galphaq-signaling, and genetic ablation or pharmacological inhibition of FAK inhibits UM growth. Analysis of the FAK-regulated transcriptome demonstrated that GNAQ stimulates YAP through FAK. Dissection of the underlying mechanism revealed that FAK regulates YAP by tyrosine phosphorylation of MOB1, inhibiting core Hippo signaling. Our findings establish FAK as a potential therapeutic target for UM and other Galphaq-driven pathophysiologies that involve unrestrained YAP function.
Published on March 14, 2019
READ PUBLICATION →

Long Noncoding RNA and Protein Interactions: From Experimental Results to Computational Models Based on Network Methods.

Authors: Zhang H, Liang Y, Han S, Peng C, Li Y

Abstract: Non-coding RNAs with a length of more than 200 nucleotides are long non-coding RNAs (lncRNAs), which have gained tremendous attention in recent decades. Many studies have confirmed that lncRNAs have important influence in post-transcriptional gene regulation; for example, lncRNAs affect the stability and translation of splicing factor proteins. The mutations and malfunctions of lncRNAs are closely related to human disorders. As lncRNAs interact with a variety of proteins, predicting the interaction between lncRNAs and proteins is a significant way to depth exploration functions and enrich annotations of lncRNAs. Experimental approaches for lncRNA(-)protein interactions are expensive and time-consuming. Computational approaches to predict lncRNA(-)protein interactions can be grouped into two broad categories. The first category is based on sequence, structural information and physicochemical property. The second category is based on network method through fusing heterogeneous data to construct lncRNA related heterogeneous network. The network-based methods can capture the implicit feature information in the topological structure of related biological heterogeneous networks containing lncRNAs, which is often ignored by sequence-based methods. In this paper, we summarize and discuss the materials, interaction score calculation algorithms, advantages and disadvantages of state-of-the-art algorithms of lncRNA(-)protein interaction prediction based on network methods to assist researchers in selecting a suitable method for acquiring more dependable results. All the related different network data are also collected and processed in convenience of users, and are available at https://github.com/HAN-Siyu/APINet/.
Published on March 14, 2019
READ PUBLICATION →

Study of serious adverse drug reactions using FDA-approved drug labeling and MedDRA.

Authors: Wu L, Ingle T, Liu Z, Zhao-Wong A, Harris S, Thakkar S, Zhou G, Yang J, Xu J, Mehta D, Ge W, Tong W, Fang H

Abstract: BACKGROUND: Adverse Drug Reactions (ADRs) are of great public health concern. FDA-approved drug labeling summarizes ADRs of a drug product mainly in three sections, i.e., Boxed Warning (BW), Warnings and Precautions (WP), and Adverse Reactions (AR), where the severity of ADRs are intended to decrease in the order of BW > WP > AR. Several reported studies have extracted ADRs from labeling documents, but most, if not all, did not discriminate the severity of the ADRs by the different labeling sections. Such a practice could overstate or underestimate the impact of certain ADRs to the public health. In this study, we applied the Medical Dictionary for Regulatory Activities (MedDRA) to drug labeling and systematically analyzed and compared the ADRs from the three labeling sections with a specific emphasis on analyzing serious ADRs presented in BW, which is of most drug safety concern. RESULTS: This study investigated New Drug Application (NDA) labeling documents for 1164 single-ingredient drugs using Oracle Text search to extract MedDRA terms. We found that only a small portion of MedDRA Preferred Terms (PTs), 3819 out of 21,920 or 17.42%, were observed in a whole set of documents. In detail, 466/3819 (12.0%) PTs were in BW, 2023/3819 (53.0%) were in WP, and 2961/3819 (77.5%) were in AR sections. We also found a higher overlap of top 20 occurring BW PTs with WP sections compared to AR sections. Within the MedDRA System Organ Class levels, serious ADRs (sADRs) from BW were prevalent in Nervous System disorders and Vascular disorders. A Hierarchical Cluster Analysis (HCA) revealed that drugs within the same therapeutic category shared the same ADR patterns in BW (e.g., nervous system drug class is highly associated with drug abuse terms such as dependence, substance abuse, and respiratory depression). CONCLUSIONS: This study demonstrated that combining MedDRA standard terminologies with data mining techniques facilitated computer-aided ADR analysis of drug labeling. We also highlighted the importance of labeling sections that differ in seriousness and application in drug safety. Using sADRs primarily related to BW sections, we illustrated a prototype approach for computer-aided ADR monitoring and studies which can be applied to other public health documents.
Published on March 14, 2019
READ PUBLICATION →

KMR: knowledge-oriented medicine representation learning for drug-drug interaction and similarity computation.

Authors: Shen Y, Yuan K, Yang M, Tang B, Li Y, Du N, Lei K

Abstract: Efficient representations of drugs provide important support for healthcare analytics, such as drug-drug interaction (DDI) prediction and drug-drug similarity (DDS) computation. However, incomplete annotated data and drug feature sparseness create substantial barriers for drug representation learning, making it difficult to accurately identify new drug properties prior to public release. To alleviate these deficiencies, we propose KMR, a knowledge-oriented feature-driven method which can learn drug related knowledge with an accurate representation. We conduct series of experiments on real-world medical datasets to demonstrate that KMR is capable of drug representation learning. KMR can support to discover meaningful DDI with an accuracy rate of 92.19%, demonstrating that techniques developed in KMR significantly improve the prediction quality for new drugs not seen at training. Experimental results also indicate that KMR can identify DDS with an accuracy rate of 88.7% by facilitating drug knowledge, outperforming existing state-of-the-art drug similarity measures.
Published on March 13, 2019
READ PUBLICATION →

Network-based prediction of drug combinations.

Authors: Cheng F, Kovacs IA, Barabasi AL

Abstract: Drug combinations, offering increased therapeutic efficacy and reduced toxicity, play an important role in treating multiple complex diseases. Yet, our ability to identify and validate effective combinations is limited by a combinatorial explosion, driven by both the large number of drug pairs as well as dosage combinations. Here we propose a network-based methodology to identify clinically efficacious drug combinations for specific diseases. By quantifying the network-based relationship between drug targets and disease proteins in the human protein-protein interactome, we show the existence of six distinct classes of drug-drug-disease combinations. Relying on approved drug combinations for hypertension and cancer, we find that only one of the six classes correlates with therapeutic effects: if the targets of the drugs both hit disease module, but target separate neighborhoods. This finding allows us to identify and validate antihypertensive combinations, offering a generic, powerful network methodology to identify efficacious combination therapies in drug development.