Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in January 2019
READ PUBLICATION →

The influence of heart failure on the pharmacokinetics of cardiovascular and non-cardiovascular drugs: a critical appraisal of the evidence.

Authors: Mangoni AA, Jarmuzewska EA

Abstract: Prescribing in heart failure (HF), a common disease state that predominantly affects the older population, is often a challenging task because of the dynamic nature of the condition, requiring frequent monitoring and medication review, the presence of various comorbidities, and the frailty phenotype of many patients. The significant alterations in various organs and tissues occurring in HF, particularly the reduced cardiac output with peripheral hypoperfusion and the structural and functional changes of the gastrointestinal tract, liver and kidney, might affect the pharmacokinetics of several drugs. This review critically appraises the results of published studies investigating the pharmacokinetics of currently marketed cardiovascular and selected non-cardiovascular drugs in HF patients and control groups, identifies gaps in the current knowledge, and suggests avenues for future research in this complex patient population.
Published on January 28, 2019
READ PUBLICATION →

Development and Testing of Druglike Screening Libraries.

Authors: Wang J, Ge Y, Xie XQ

Abstract: Although significant advances in experimental high throughput screening (HTS) have been made for drug lead identification, in silico virtual screening (VS) is indispensable owing to its unique advantage over experimental HTS, target-focused, cheap, and efficient, albeit its disadvantage of producing false positive hits. For both experimental HTS and VS, the quality of screening libraries is crucial and determines the outcome of those studies. In this paper, we first reviewed the recent progress on screening library construction. We realized the urgent need for compiling high-quality screening libraries in drug discovery. Then we compiled a set of screening libraries from about 20 million druglike ZINC molecules by running fingerprint-based similarity searches against known drug molecules. Lastly, the screening libraries were objectively evaluated using 5847 external actives covering more than 2000 drug targets. The result of the assessment is very encouraging. For example, with the Tanimoto coefficient being set to 0.75, 36% of external actives were retrieved and the enrichment factor was 13. Additionally, drug target family specific screening libraries were also constructed and evaluated. The druglike screening libraries are available for download from https://mulan.pharmacy.pitt.edu .
Published on January 28, 2019
READ PUBLICATION →

ezCADD: A Rapid 2D/3D Visualization-Enabled Web Modeling Environment for Democratizing Computer-Aided Drug Design.

Authors: Tao A, Huang Y, Shinohara Y, Caylor ML, Pashikanti S, Xu D

Abstract: As abundant and user-friendly as computer-aided drug design (CADD) software may seem, there is still a large underserved population of biomedical researchers around the world, particularly those with no computational training and limited research funding. To address this important need and help scientists overcome barriers that impede them from leveraging CADD in their drug discovery work, we have developed ezCADD, a web-based CADD modeling environment that manifests four simple design concepts: easy, quick, user-friendly, and 2D/3D visualization-enabled. In this paper, we describe the features of three fundamental applications that have been implemented in ezCADD: small-molecule docking, protein-protein docking, and binding pocket detection, and their applications in drug design against a pathogenic microbial enzyme as an example. To assess user experience and the effectiveness of our implementation, we introduced ezCADD to first-year pharmacy students as an active learning exercise in the Principles of Drug Action course. The web service robustly handled 95 simultaneous molecular docking jobs. Our survey data showed that among the 95 participating students, 97% completed the molecular docking experiment on their own at least partially without extensive training; 88% considered ezCADD easy and user-friendly; 99-100% agreed that ezCADD enhanced the understanding of drug-receptor structures and recognition; and the student experience in molecular modeling and visualization was significantly improved from zero to a higher level. The student feedback represents the baseline data of user experience from noncomputational researchers. It is demonstrated that in addition to supporting drug discovery research, ezCADD is also an effective tool for promoting science, technology, engineering, and mathematics (STEM) education. More advanced CADD applications are being developed and added to ezCADD, available at http://dxulab.org/software .
Published on January 25, 2019
READ PUBLICATION →

Systematic domain-based aggregation of protein structures highlights DNA-, RNA- and other ligand-binding positions.

Authors: Kobren SN, Singh M

Abstract: Domains are fundamental subunits of proteins, and while they play major roles in facilitating protein-DNA, protein-RNA and other protein-ligand interactions, a systematic assessment of their various interaction modes is still lacking. A comprehensive resource identifying positions within domains that tend to interact with nucleic acids, small molecules and other ligands would expand our knowledge of domain functionality as well as aid in detecting ligand-binding sites within structurally uncharacterized proteins. Here, we introduce an approach to identify per-domain-position interaction 'frequencies' by aggregating protein co-complex structures by domain and ascertaining how often residues mapping to each domain position interact with ligands. We perform this domain-based analysis on approximately 91000 co-complex structures, and infer positions involved in binding DNA, RNA, peptides, ions or small molecules across 4128 domains, which we refer to collectively as the InteracDome. Cross-validation testing reveals that ligand-binding positions for 2152 domains are highly consistent and can be used to identify residues facilitating interactions in approximately 63-69% of human genes. Our resource of domain-inferred ligand-binding sites should be a great aid in understanding disease etiology: whereas these sites are enriched in Mendelian-associated and cancer somatic mutations, they are depleted in polymorphisms observed across healthy populations. The InteracDome is available at http://interacdome.princeton.edu.
Published on January 24, 2019
READ PUBLICATION →

Neuropathological correlates and genetic architecture of microglial activation in elderly human brain.

Authors: Felsky D, Roostaei T, Nho K, Risacher SL, Bradshaw EM, Petyuk V, Schneider JA, Saykin A, Bennett DA, De Jager PL

Abstract: Microglia, the resident immune cells of the brain, have important roles in brain health. However, little is known about the regulation and consequences of microglial activation in the aging human brain. Here we report that the proportion of morphologically activated microglia (PAM) in postmortem cortical tissue is strongly associated with beta-amyloid, tau-related neuropathology, and the rate of cognitive decline. Effect sizes for PAM measures are substantial, comparable to that of APOE epsilon4, the strongest genetic risk factor for Alzheimer's disease, and mediation models support an upstream role for microglial activation in Alzheimer's disease via accumulation of tau. Further, we identify a common variant (rs2997325) influencing PAM that also affects in vivo microglial activation measured by [(11)C]-PBR28 PET in an independent cohort. Thus, our analyses begin to uncover pathways regulating resident neuroinflammation and identify overlaps of PAM's genetic architecture with those of Alzheimer's disease and several other traits.
Published on January 17, 2019
READ PUBLICATION →

INSIdE NANO: a systems biology framework to contextualize the mechanism-of-action of engineered nanomaterials.

Authors: Serra A, Letunic I, Fortino V, Handy RD, Fadeel B, Tagliaferri R, Greco D

Abstract: Engineered nanomaterials (ENMs) are widely present in our daily lives. Despite the efforts to characterize their mechanism of action in multiple species, their possible implications in human pathologies are still not fully understood. Here we performed an integrated analysis of the effects of ENMs on human health by contextualizing their transcriptional mechanism-of-action with respect to drugs, chemicals and diseases. We built a network of interactions of over 3,000 biological entities and developed a novel computational tool, INSIdE NANO, to infer new knowledge about ENM behavior. We highlight striking association of metal and metal-oxide nanoparticles and major neurodegenerative disorders. Our novel strategy opens possibilities to achieve fast and accurate read-across evaluation of ENMs and other chemicals based on their biosignatures.
Published on January 14, 2019
READ PUBLICATION →

Identifying primary site of lung-limited Cancer of unknown primary based on relative gene expression orderings.

Authors: Li M, Li H, Hong G, Tang Z, Liu G, Lin X, Lin M, Qi L, Guo Z

Abstract: BACKGROUND: Precise diagnosis of the tissue origin for metastatic cancer of unknown primary (CUP) is essential for deciding the treatment scheme to improve patients' prognoses, since the treatment for the metastases is the same as their primary counterparts. The purpose of this study is to identify a robust gene signature that can predict the origin for CUPs. METHODS: The within-sample relative gene expression orderings (REOs) of gene pairs within individual samples, which are insensitive to experimental batch effects and data normalizations, were exploited for identifying the prediction signature. RESULTS: Using gene expression profiles of the lung-limited metastatic colorectal cancer (LmCRC), we firstly showed that the within-sample REOs in lung metastases of colorectal cancer (CRC) samples were concordant with the REOs in primary CRC samples rather than with the REOs in primary lung cancer. Based on this phenomenon, we selected five gene pairs with consistent REOs in 498 primary CRC and reversely consistent REOs in 509 lung cancer samples, which were used as a signature for predicting primary sites of metastatic CRC based on the majority voting rule. Applying the signature to 654 primary CRC and 204 primary lung cancer samples collected from multiple datasets, the prediction accuracy reached 99.36%. This signature was also applied to 24 LmCRC samples collected from three datasets produced by different laboratories and the accuracy reached 100%, suggesting that the within-sample REOs in the primary site could reveal the original tissue of metastatic cancers. CONCLUSIONS: The result demonstrated that the signature based on within-sample REOs of five gene pairs could exactly and robustly identify the primary sites of CUPs.
Published on January 8, 2019
READ PUBLICATION →

PreMedKB: an integrated precision medicine knowledgebase for interpreting relationships between diseases, genes, variants and drugs.

Authors: Yu Y, Wang Y, Xia Z, Zhang X, Jin K, Yang J, Ren L, Zhou Z, Yu D, Qing T, Zhang C, Jin L, Zheng Y, Guo L, Shi L

Abstract: One important aspect of precision medicine aims to deliver the right medicine to the right patient at the right dose at the right time based on the unique 'omics' features of each individual patient, thus maximizing drug efficacy and minimizing adverse drug reactions. However, fragmentation and heterogeneity of available data makes it challenging to readily obtain first-hand information regarding some particular diseases, drugs, genes and variants of interest. Therefore, we developed the Precision Medicine Knowledgebase (PreMedKB) by seamlessly integrating the four fundamental components of precision medicine: diseases, genes, variants and drugs. PreMedKB allows for search of comprehensive information within each of the four components, the relationships between any two or more components, and importantly, the interpretation of the clinical meanings of a patient's genetic variants. PreMedKB is an efficient and user-friendly tool to assist researchers, clinicians or patients in interpreting a patient's genetic profile in terms of discovering potential pathogenic variants, recommending therapeutic regimens, designing panels for genetic testing kits, and matching patients for clinical trials. PreMedKB is freely accessible and available at http://www.fudan-pgx.org/premedkb/index.html#/home.
Published on January 8, 2019
READ PUBLICATION →

FusionGDB: fusion gene annotation DataBase.

Authors: Kim P, Zhou X

Abstract: Gene fusion is one of the hallmarks of cancer genome via chromosomal rearrangement initiated by DNA double-strand breakage. To date, many fusion genes (FGs) have been established as important biomarkers and therapeutic targets in multiple cancer types. To better understand the function of FGs in cancer types and to promote the discovery of clinically relevant FGs, we built FusionGDB (Fusion Gene annotation DataBase) available at https://ccsm.uth.edu/FusionGDB. We collected 48 117 FGs across pan-cancer from three representative fusion gene resources: the improved database of chimeric transcripts and RNA-seq data (ChiTaRS 3.1), an integrative resource for cancer-associated transcript fusions (TumorFusions), and The Cancer Genome Atlas (TCGA) fusions by Gao et al. For these approximately 48K FGs, we performed functional annotations including gene assessment across pan-cancer fusion genes, open reading frame (ORF) assignment, and retention search of 39 protein features based on gene structures of multiple isoforms with different breakpoints. We also provided the fusion transcript and amino acid sequences according to multiple breakpoints and transcript isoforms. Our analyses identified 331, 303 and 667 in-frame FGs with retaining kinase, DNA-binding, and epigenetic factor domains, respectively, as well as 976 FGs lost protein-protein interaction. FusionGDB provides six categories of annotations: FusionGeneSummary, FusionProtFeature, FusionGeneSequence, FusionGenePPI, RelatedDrug and RelatedDisease.
Published on January 8, 2019
READ PUBLICATION →

SAGD: a comprehensive sex-associated gene database from transcriptomes.

Authors: Shi MW, Zhang NA, Shi CP, Liu CJ, Luo ZH, Wang DY, Guo AY, Chen ZX

Abstract: Many animal species present sex differences. Sex-associated genes (SAGs), which have female-biased or male-biased expression, have major influences on the remarkable sex differences in important traits such as growth, reproduction, disease resistance and behaviors. However, the SAGs resulting in the vast majority of phenotypic sex differences are still unknown. To provide a useful resource for the functional study of SAGs, we manually curated public RNA-seq datasets with paired female and male biological replicates from the same condition and systematically re-analyzed the datasets using standardized methods. We identified 27,793 female-biased SAGs and 64,043 male-biased SAGs from 2,828 samples of 21 species, including human, chimpanzee, macaque, mouse, rat, cow, horse, chicken, zebrafish, seven fly species and five worm species. All these data were cataloged into SAGD, a user-friendly database of SAGs (http://bioinfo.life.hust.edu.cn/SAGD) where users can browse SAGs by gene, species, drug and dataset. In SAGD, the expression, annotation, targeting drugs, homologs, ontology and related RNA-seq datasets of SAGs are provided to help researchers to explore their functions and potential applications in agriculture and human health.