Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on January 1, 2019
READ PUBLICATION →

Quantitative and systems pharmacology 4. Network-based analysis of drug pleiotropy on coronary artery disease.

Authors: Fang J, Cai C, Chai Y, Zhou J, Huang Y, Gao L, Wang Q, Cheng F

Abstract: Despite recent advance of therapeutic development, coronary artery disease (CAD) remains one of the major issues to public health. The use of genomics and systems biology approaches to inform drug discovery and development have offered the possibilities for new target identification and in silico drug repurposing. In this study, we propose a network-based, systems pharmacology framework for target identification and drug repurposing in pharmacologic treatment and chemoprevention of CAD. Specifically, we build in silico models by integrating known drug-target interactions, CAD genes derived from the genetic and genomic studies, and the human protein-protein interactome. We demonstrate that the proposed in silico models can successfully uncover approved drugs and novel natural products in potentially treating and preventing CAD. In case studies, we highlight several approved drugs (e.g., fasudil, parecoxib, and dexamethasone) or natural products (e.g., resveratrol, luteolin, daidzein and caffeic acid) with new mechanism-of-action in chemical intervention of CAD by network analysis. In summary, this study offers a powerful systems pharmacology approach for target identification and in silico drug repurposing on CAD.
Published on January 1, 2019
READ PUBLICATION →

'One DB to rule them all'-the RING: a Regulatory INteraction Graph combining TFs, genes/proteins, SNPs, diseases and drugs.

Authors: Politano G, Di Carlo S, Benso A

Abstract: In the last decade, genomics data have been largely adopted to sketch, study and better understand the complex mechanisms that underlie biological processes. The amount of publicly available data sources has grown accordingly, and several types of regulatory interactions have been collected and documented in literature. Unfortunately, often these efforts do not follow any data naming/interoperability/formatting standards, resulting in high-quality but often uninteroperable heterogeneous data repositories. To efficiently take advantage of the large amount of available data and integrate these heterogeneous sources of information, we built the RING (Regulatory Interaction Graph), an integrative standardized multilevel database of biological interactions able to provide a comprehensive and unmatched high-level perspective on several phenomena that take place in the regulatory cascade and that researchers can use to easily build regulatory networks around entities of interest.
Published on January 1, 2019
READ PUBLICATION →

CDEK: Clinical Drug Experience Knowledgebase.

Authors: Griesenauer RH, Schillebeeckx C, Kinch MS

Abstract: The Clinical Drug Experience Knowledgebase (CDEK) is a database and web platform of active pharmaceutical ingredients with evidence of clinical testing as well as the organizations involved in their research and development. CDEK was curated by disambiguating intervention and organization names from ClinicalTrials.gov and cross-referencing these entries with other prominent drug databases. Approximately 43% of active pharmaceutical ingredients in the CDEK database were sourced from ClinicalTrials.gov and cannot be found in any other prominent compound-oriented database. The contents of CDEK are structured around three pillars: active pharmaceutical ingredients (n = 22 292), clinical trials (n = 127 223) and organizations (n = 24 728). The envisioned use of the CDEK is to support the investigation of many aspects of drug development, including discovery, repurposing opportunities, chemo- and bio-informatics, clinical and translational research and regulatory sciences.
Published on January 1, 2019
READ PUBLICATION →

CANCROX: a cross-species cancer therapy database.

Authors: de Avila PM, E Silva DCV, de Melo Bernardo PC, da Silva RGTM, Fachin AL, Marins M, Carita EC

Abstract: Cancer comprises a set of more than 200 diseases resulting from the uncontrolled growth of cells that invade tissues and organs, which can spread to other regions of the body. The types of cancer found in humans are also described in animal models, a fact that has raised the interest of the scientific community in comparative oncology studies. In this study, bioinformatics tools were used to implement a computational model that uses text mining and natural language processing to construct a reference database that relates human and canine genes potentially associated with cancer, defining genetic pathways and information about cancer and cancer therapies. The CANCROX reference database was constructed by processing the scientific literature and lists more than 1300 drugs and therapies used to treat cancer, in addition to over 10 000 combinations of these drugs, including 40 types of cancer. A user-friendly interface was developed that enables researchers to search for different types of information about therapies, drug combinations, genes and types of cancer. In addition, data visualization tools allow to explore and relate different drugs and therapies for the treatment of cancer, providing information for groups studying animal models, in this case the dog, as well as groups studying cancer in humans.
Published on January 1, 2019
READ PUBLICATION →

MycoResistance: a curated resource of drug resistance molecules in Mycobacteria.

Authors: Dai E, Zhang H, Zhou X, Song Q, Li D, Luo L, Xu X, Jiang W, Ling H

Abstract: The emergence and spread of drug-resistant Mycobacterium tuberculosis is of global concern. To improve the understanding of drug resistance in Mycobacteria, numerous studies have been performed to discover diagnostic markers and genetic determinants associated with resistance to anti-tuberculosis drug. However, the related information is scattered in a massive body of literature, which is inconvenient for researchers to investigate the molecular mechanism of drug resistance. Therefore, we manually collected 1707 curated associations between 73 compounds and 132 molecules (including coding genes and non-coding RNAs) in 6 mycobacterial species from 465 studies. The experimental details of molecular epidemiology and mechanism exploration research were also summarized and recorded in our work. In addition, multidrug resistance and extensively drug resistance molecules were also extracted to interpret the molecular mechanisms that are responsible for cross resistance among anti-tuberculosis drugs. Finally, we constructed an omnibus repository named MycoResistance, a user friendly interface to conveniently browse, search and download all related entries. We hope that this elaborate database will serve as a beneficial resource for mechanism explanations, precise diagnosis and effective treatment of drug-resistant mycobacterial strains.
Published on January 1, 2019
READ PUBLICATION →

ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness.

Authors: Guan L, Yang H, Cai Y, Sun L, Di P, Li W, Liu G, Tang Y

Abstract: Chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET), play key roles in drug discovery and development. A high-quality drug candidate should not only have sufficient efficacy against the therapeutic target, but also show appropriate ADMET properties at a therapeutic dose. A lot of in silico models are hence developed for prediction of chemical ADMET properties. However, it is still not easy to evaluate the drug-likeness of compounds in terms of so many ADMET properties. In this study, we proposed a scoring function named the ADMET-score to evaluate drug-likeness of a compound. The scoring function was defined on the basis of 18 ADMET properties predicted via our web server admetSAR. The weight of each property in the ADMET-score was determined by three parameters: the accuracy rate of the model, the importance of the endpoint in the process of pharmacokinetics, and the usefulness index. The FDA-approved drugs from DrugBank, the small molecules from ChEMBL and the old drugs withdrawn from the market due to safety concerns were used to evaluate the performance of the ADMET-score. The indices of the arithmetic mean and p-value showed that the ADMET-score among the three data sets differed significantly. Furthermore, we learned that there was no obvious linear correlation between the ADMET-score and QED (quantitative estimate of drug-likeness). These results suggested that the ADMET-score would be a comprehensive index to evaluate chemical drug-likeness, and might be helpful for users to select appropriate drug candidates for further development.
Published on January 1, 2019
READ PUBLICATION →

Automatic identification of relevant chemical compounds from patents.

Authors: Akhondi SA, Rey H, Schworer M, Maier M, Toomey J, Nau H, Ilchmann G, Sheehan M, Irmer M, Bobach C, Doornenbal M, Gregory M, Kors JA

Abstract: In commercial research and development projects, public disclosure of new chemical compounds often takes place in patents. Only a small proportion of these compounds are published in journals, usually a few years after the patent. Patent authorities make available the patents but do not provide systematic continuous chemical annotations. Content databases such as Elsevier's Reaxys provide such services mostly based on manual excerptions, which are time-consuming and costly. Automatic text-mining approaches help overcome some of the limitations of the manual process. Different text-mining approaches exist to extract chemical entities from patents. The majority of them have been developed using sub-sections of patent documents and focus on mentions of compounds. Less attention has been given to relevancy of a compound in a patent. Relevancy of a compound to a patent is based on the patent's context. A relevant compound plays a major role within a patent. Identification of relevant compounds reduces the size of the extracted data and improves the usefulness of patent resources (e.g. supports identifying the main compounds). Annotators of databases like Reaxys only annotate relevant compounds. In this study, we design an automated system that extracts chemical entities from patents and classifies their relevance. The gold-standard set contained 18 789 chemical entity annotations. Of these, 10% were relevant compounds, 88% were irrelevant and 2% were equivocal. Our compound recognition system was based on proprietary tools. The performance (F-score) of the system on compound recognition was 84% on the development set and 86% on the test set. The relevancy classification system had an F-score of 86% on the development set and 82% on the test set. Our system can extract chemical compounds from patents and classify their relevance with high performance. This enables the extension of the Reaxys database by means of automation.
Published on January 1, 2019
READ PUBLICATION →

MolMeDB: Molecules on Membranes Database.

Authors: Juracka J, Srejber M, Melikova M, Bazgier V, Berka K

Abstract: Biological membranes act as barriers or reservoirs for many compounds within the human body. As such, they play an important role in pharmacokinetics and pharmacodynamics of drugs and other molecular species. Until now, most membrane/drug interactions have been inferred from simple partitioning between octanol and water phases. However, the observed variability in membrane composition and among compounds themselves stretches beyond such simplification as there are multiple drug-membrane interactions. Numerous experimental and theoretical approaches are used to determine the molecule-membrane interactions with variable accuracy, but there is no open resource for their critical comparison. For this reason, we have built Molecules on Membranes Database (MolMeDB), which gathers data about over 3600 compound-membrane interactions including partitioning, penetration and positioning. The data have been collected from scientific articles published in peer-reviewed journals and complemented by in-house calculations from high-throughput COSMOmic approach to set up a baseline for further comparison. The data in MolMeDB are fully searchable and browsable by means of name, SMILES, membrane, method or dataset and we offer the collected data openly for further reuse and we are open to further additions. MolMeDB can be a powerful tool that could help researchers better understand the role of membranes and to compare individual approaches used for the study of molecule/membrane interactions.
Published on January 1, 2019
READ PUBLICATION →

ResMarkerDB: a database of biomarkers of response to antibody therapy in breast and colorectal cancer.

Authors: Perez-Granado J, Pinero J, Furlong LI

Abstract: The clinical efficacy of therapeutic monoclonal antibodies for breast and colorectal cancer has greatly contributed to the improvement of patients' outcomes by individualizing their treatments according to their genomic background. However, primary or acquired resistance to treatment reduces its efficacy. In this context, the identification of biomarkers predictive of drug response would support research and development of new alternative treatments. Biomarkers play a major role in the genomic revolution, supporting disease diagnosis and treatment decision-making. Currently, several molecular biomarkers of treatment response for breast and colorectal cancer have been described. However, information on these biomarkers is scattered across several resources, and needs to be identified, collected and properly integrated to be fully exploited to inform monitoring of drug response in patients. Therefore, there is a need of resources that offer biomarker data in a harmonized manner to the user to support the identification of actionable biomarkers of response to treatment in cancer. ResMarkerDB was developed as a comprehensive resource of biomarkers of drug response in colorectal and breast cancer. It integrates data of biomarkers of drug response from existing repositories, and new data extracted and curated from the literature (referred as ResCur). ResMarkerDB currently features 266 biomarkers of diverse nature. Twenty-five percent of these biomarkers are exclusive of ResMarkerDB. Furthermore, ResMarkerDB is one of the few resources offering non-coding DNA data in response to drug treatment. The database contains more than 500 biomarker-drug-tumour associations, covering more than 100 genes. ResMarkerDB provides a web interface to facilitate the exploration of the current knowledge of biomarkers of response in breast and colorectal cancer. It aims to enhance translational research efforts in identifying actionable biomarkers of drug response in cancer.
Published in 2018
READ PUBLICATION →

A Novel Systems Pharmacology Method to Investigate Molecular Mechanisms of Scutellaria barbata D. Don for Non-small Cell Lung Cancer.

Authors: Liu J, Jiang M, Li Z, Zhang X, Li X, Hao Y, Su X, Zhu J, Zheng C, Xiao W, Wang Y

Abstract: Non-small cell lung cancer (NSCLC) is the most ordinary type of lung cancer which leads to 1/3 of all cancer deaths. At present, cytotoxic chemotherapy, surgical resection, radiation, and photodynamic therapy are the main strategies for NSCLC treatment. However, NSCLC is relatively resistant to the above therapeutic strategies, resulting in a rather low (20%) 5-year survival rate. Therefore, there is imperative to identify or develop efficient lead compounds for the treatment of NSCLC. Here, we report that the herb Scutellaria barbata D. Don (SBD) can effectively treat NSCLC by anti-inflammatory, promoting apoptosis, cell cycle arrest, and angiogenesis. In this work, we analyze the molecular mechanism of SBD for NSCLC treatment by applying the systems pharmacology strategy. This method combines pharmacokinetics analysis with pharmacodynamics evaluation to screen out the active compounds, predict the targets and assess the networks and pathways. Results show that 33 compounds were identified with potential anti-cancer effects. Utilizing these active compounds as probes, we predicted that 145 NSCLC related targets mainly involved four aspects: apoptosis, inflammation, cell cycle, and angiogenesis. And in vitro experiments were managed to evaluate the reliability of some vital active compounds and targets. Overall, a complete overview of the integrated systems pharmacology method provides a precise probe to elucidate the molecular mechanisms of SBD for NSCLC. Moreover, baicalein from SBD effectively inhibited tumor growth in an LLC tumor-bearing mice models, demonstrating the anti-tumor effects of SBD. Our findings further provided experimental evidence for the application in the treatment of NSCLC.