Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on January 12, 2017
READ PUBLICATION →

Predicting drug-target interactions by dual-network integrated logistic matrix factorization.

Authors: Hao M, Bryant SH, Wang Y

Abstract: In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.
Published on January 10, 2017
READ PUBLICATION →

Elucidating the modes of action for bioactive compounds in a cell-specific manner by large-scale chemically-induced transcriptomics.

Authors: Iwata M, Sawada R, Iwata H, Kotera M, Yamanishi Y

Abstract: The identification of the modes of action of bioactive compounds is a major challenge in chemical systems biology of diseases. Genome-wide expression profiling of transcriptional responses to compound treatment for human cell lines is a promising unbiased approach for the mode-of-action analysis. Here we developed a novel approach to elucidate the modes of action of bioactive compounds in a cell-specific manner using large-scale chemically-induced transcriptome data acquired from the Library of Integrated Network-based Cellular Signatures (LINCS), and analyzed 16,268 compounds and 68 human cell lines. First, we performed pathway enrichment analyses of regulated genes to reveal active pathways among 163 biological pathways. Next, we explored potential target proteins (including primary targets and off-targets) with cell-specific transcriptional similarity using chemical-protein interactome. Finally, we predicted new therapeutic indications for 461 diseases based on the target proteins. We showed the usefulness of the proposed approach in terms of prediction coverage, interpretation, and large-scale applicability, and validated the new prediction results experimentally by an in vitro cellular assay. The approach has a high potential for advancing drug discovery and repositioning.
Published on January 6, 2017
READ PUBLICATION →

Harnessing Big Data for Systems Pharmacology.

Authors: Xie L, Draizen EJ, Bourne PE

Abstract: Systems pharmacology aims to holistically understand mechanisms of drug actions to support drug discovery and clinical practice. Systems pharmacology modeling (SPM) is data driven. It integrates an exponentially growing amount of data at multiple scales (genetic, molecular, cellular, organismal, and environmental). The goal of SPM is to develop mechanistic or predictive multiscale models that are interpretable and actionable. The current explosions in genomics and other omics data, as well as the tremendous advances in big data technologies, have already enabled biologists to generate novel hypotheses and gain new knowledge through computational models of genome-wide, heterogeneous, and dynamic data sets. More work is needed to interpret and predict a drug response phenotype, which is dependent on many known and unknown factors. To gain a comprehensive understanding of drug actions, SPM requires close collaborations between domain experts from diverse fields and integration of heterogeneous models from biophysics, mathematics, statistics, machine learning, and semantic webs. This creates challenges in model management, model integration, model translation, and knowledge integration. In this review, we discuss several emergent issues in SPM and potential solutions using big data technology and analytics. The concurrent development of high-throughput techniques, cloud computing, data science, and the semantic web will likely allow SPM to be findable, accessible, interoperable, reusable, reliable, interpretable, and actionable.
Published on January 5, 2017
READ PUBLICATION →

Network-Based Approach to Identify Potential Targets and Drugs that Promote Neuroprotection and Neurorepair in Acute Ischemic Stroke.

Authors: Wang Y, Liu H, Lin Y, Liu G, Chu H, Zhao P, Yang X, Zheng T, Fan M, Zhou X, Meng J, Sun C

Abstract: Acute ischemic stroke (AIS) accounts for more than 80% of the approximately 610,000 new stroke cases worldwide every year. Both ischemia and reperfusion can cause death, damage, and functional changes of affected nerve cells, and these alterations can result in high rates of disability and mortality. Therefore, therapies aimed at increasing neuroprotection and neurorepair would make significant contributions to AIS management. However, with regard to AIS therapies, there is currently a large gap between experimental achievements and practical clinical solutions (EC-GAP-AIS). Here, by integrating curated disease-gene associations and interactome network known to be related to AIS, we investigated the molecular network mechanisms of multi-module structures underlying AIS, which might be relevant to the time frame subtypes of AIS. In addition, the EC-GAP-AIS phenomenon was confirmed and elucidated by the shortest path lengths and the inconsistencies in the molecular functionalities and overlapping pathways between AIS-related genes and drug targets. Furthermore, we identified 23 potential targets (e.g. ADORA3, which is involved in the regulation of cellular reprogramming and the extracellular matrix) and 46 candidate drugs (e.g. felbamate, methylphenobarbital and memantine) that may have value for the treatment of AIS.
Published on January 5, 2017
READ PUBLICATION →

Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data.

Authors: Zhang W, Chen Y, Liu F, Luo F, Tian G, Li X

Abstract: BACKGROUND: Drug-drug interactions (DDIs) are one of the major concerns in drug discovery. Accurate prediction of potential DDIs can help to reduce unexpected interactions in the entire lifecycle of drugs, and are important for the drug safety surveillance. RESULTS: Since many DDIs are not detected or observed in clinical trials, this work is aimed to predict unobserved or undetected DDIs. In this paper, we collect a variety of drug data that may influence drug-drug interactions, i.e., drug substructure data, drug target data, drug enzyme data, drug transporter data, drug pathway data, drug indication data, drug side effect data, drug off side effect data and known drug-drug interactions. We adopt three representative methods: the neighbor recommender method, the random walk method and the matrix perturbation method to build prediction models based on different data. Thus, we evaluate the usefulness of different information sources for the DDI prediction. Further, we present flexible frames of integrating different models with suitable ensemble rules, including weighted average ensemble rule and classifier ensemble rule, and develop ensemble models to achieve better performances. CONCLUSIONS: The experiments demonstrate that different data sources provide diverse information, and the DDI network based on known DDIs is one of most important information for DDI prediction. The ensemble methods can produce better performances than individual methods, and outperform existing state-of-the-art methods. The datasets and source codes are available at https://github.com/zw9977129/drug-drug-interaction/ .
Published on January 5, 2017
READ PUBLICATION →

An analysis of disease-gene relationship from Medline abstracts by DigSee.

Authors: Kim J, Kim JJ, Lee H

Abstract: Diseases are developed by abnormal behavior of genes in biological events such as gene regulation, mutation, phosphorylation, and epigenetics and post-translational modification. Many studies of text mining attempted to identify the relationship between gene and disease by mining the literature, but they did not consider the biological events in which genes show abnormal behaviour in response to diseases. In this study, we propose to identify disease-related genes that are involved in the development of disease through biological events from Medline abstracts. We identified associations between 13,054 genes and 4,494 disease types, which cover more disease-related genes than manually curated databases for all disease types (e.g., Online Mendelian Inheritance in Man) and also than those for specific diseases (e.g., Alzheimer's disease and hypertension). We show that the text mining findings are reliable, as per the PubMed scale, in that the disease-disease relationships inferred from the literature-wide findings are similar to those inferred from manually curated databases in a well-known study. In addition, literature-wide distribution of biological events across disease types reveals different characteristics of disease types.
Published on January 4, 2017
READ PUBLICATION →

The BioGRID interaction database: 2017 update.

Authors: Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O'Donnell L, Oster S, Theesfeld C, Sellam A, Stark C, Breitkreutz BJ, Dolinski K, Tyers M

Abstract: The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the annotation and archival of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2016 (build 3.4.140), the BioGRID contains 1 072 173 genetic and protein interactions, and 38 559 post-translational modifications, as manually annotated from 48 114 publications. This dataset represents interaction records for 66 model organisms and represents a 30% increase compared to the previous 2015 BioGRID update. BioGRID curates the biomedical literature for major model organism species, including humans, with a recent emphasis on central biological processes and specific human diseases. To facilitate network-based approaches to drug discovery, BioGRID now incorporates 27 501 chemical-protein interactions for human drug targets, as drawn from the DrugBank database. A new dynamic interaction network viewer allows the easy navigation and filtering of all genetic and protein interaction data, as well as for bioactive compounds and their established targets. BioGRID data are directly downloadable without restriction in a variety of standardized formats and are freely distributed through partner model organism databases and meta-databases.
Published on January 4, 2017
READ PUBLICATION →

mutLBSgeneDB: mutated ligand binding site gene DataBase.

Authors: Kim P, Zhao J, Lu P, Zhao Z

Abstract: Mutations at the ligand binding sites (LBSs) can influence protein structure stability, binding affinity with small molecules, and drug resistance in cancer patients. Our recent analysis revealed that ligand binding residues had a significantly higher mutation rate than other parts of the protein. Here, we built mutLBSgeneDB (mutated Ligand Binding Site gene DataBase) available at http://zhaobioinfo.org/mutLBSgeneDB We collected and curated over 2300 genes (mutLBSgenes) having approximately 12 000 somatic mutations at approximately 10 000 LBSs across 16 cancer types and selected 744 drug targetable genes (targetable_mutLBSgenes) by incorporating kinases, transcription factors, pharmacological genes, and cancer driver genes. We analyzed LBS mutation information, differential gene expression network, drug response correlation with gene expression, and protein stability changes for all mutLBSgenes using integrated genetic, genomic, transcriptomic, proteomic, network and functional information. We calculated and compared the binding affinities of 20 carefully selected genes with their drugs in wild type and mutant forms. mutLBSgeneDB provides a user-friendly web interface for searching and browsing through seven categories of annotations: Gene summary, Mutated information, Protein structure related information, Differential gene expression and gene-gene network, Phenotype information, Pharmacological information, and Conservation information. mutLBSgeneDB provides a useful resource for functional genomics, protein structure, drug and disease research communities.
Published on January 4, 2017
READ PUBLICATION →

Pharos: Collating protein information to shed light on the druggable genome.

Authors: Nguyen DT, Mathias S, Bologa C, Brunak S, Fernandez N, Gaulton A, Hersey A, Holmes J, Jensen LJ, Karlsson A, Liu G, Ma'ayan A, Mandava G, Mani S, Mehta S, Overington J, Patel J, Rouillard AD, Schurer S, Sheils T, Simeonov A, Sklar LA, Southall N, Ursu O, Vidovic D, Waller A, Yang J, Jadhav A, Oprea TI, Guha R

Abstract: The 'druggable genome' encompasses several protein families, but only a subset of targets within them have attracted significant research attention and thus have information about them publicly available. The Illuminating the Druggable Genome (IDG) program was initiated in 2014, has the goal of developing experimental techniques and a Knowledge Management Center (KMC) that would collect and organize information about protein targets from four families, representing the most common druggable targets with an emphasis on understudied proteins. Here, we describe two resources developed by the KMC: the Target Central Resource Database (TCRD) which collates many heterogeneous gene/protein datasets and Pharos (https://pharos.nih.gov), a multimodal web interface that presents the data from TCRD. We briefly describe the types and sources of data considered by the KMC and then highlight features of the Pharos interface designed to enable intuitive access to the IDG knowledgebase. The aim of Pharos is to encourage 'serendipitous browsing', whereby related, relevant information is made easily discoverable. We conclude by describing two use cases that highlight the utility of Pharos and TCRD.
Published on January 4, 2017
READ PUBLICATION →

The 24th annual Nucleic Acids Research database issue: a look back and upcoming changes.

Authors: Galperin MY, Fernandez-Suarez XM, Rigden DJ

Abstract: This year's Database Issue of Nucleic Acids Research contains 152 papers that include descriptions of 54 new databases and update papers on 98 databases, of which 16 have not been previously featured in NAR As always, these databases cover a broad range of molecular biology subjects, including genome structure, gene expression and its regulation, proteins, protein domains, and protein-protein interactions. Following the recent trend, an increasing number of new and established databases deal with the issues of human health, from cancer-causing mutations to drugs and drug targets. In accordance with this trend, three recently compiled databases that have been selected by NAR reviewers and editors as 'breakthrough' contributions, denovo-db, the Monarch Initiative, and Open Targets, cover human de novo gene variants, disease-related phenotypes in model organisms, and a bioinformatics platform for therapeutic target identification and validation, respectively. We expect these databases to attract the attention of numerous researchers working in various areas of genetics and genomics. Looking back at the past 12 years, we present here the 'golden set' of databases that have consistently served as authoritative, comprehensive, and convenient data resources widely used by the entire community and offer some lessons on what makes a successful database. The Database Issue is freely available online at the https://academic.oup.com/nar web site. An updated version of the NAR Molecular Biology Database Collection is available at http://www.oxfordjournals.org/nar/database/a/.