Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in September 2016
READ PUBLICATION →

Getting the most out of PubChem for virtual screening.

Authors: Kim S

Abstract: INTRODUCTION: With the emergence of the 'big data' era, the biomedical research community has great interest in exploiting publicly available chemical information for drug discovery. PubChem is an example of public databases that provide a large amount of chemical information free of charge. AREAS COVERED: This article provides an overview of how PubChem's data, tools, and services can be used for virtual screening and reviews recent publications that discuss important aspects of exploiting PubChem for drug discovery. EXPERT OPINION: PubChem offers comprehensive chemical information useful for drug discovery. It also provides multiple programmatic access routes, which are essential to build automated virtual screening pipelines that exploit PubChem data. In addition, PubChemRDF allows users to download PubChem data and load them into a local computing facility, facilitating data integration between PubChem and other resources. PubChem resources have been used in many studies for developing bioactivity and toxicity prediction models, discovering polypharmacologic (multi-target) ligands, and identifying new macromolecule targets of compounds (for drug-repurposing or off-target side effect prediction). These studies demonstrate the usefulness of PubChem as a key resource for computer-aided drug discovery and related area.
Published in September 2016
READ PUBLICATION →

DenHunt - A Comprehensive Database of the Intricate Network of Dengue-Human Interactions.

Authors: Karyala P, Metri R, Bathula C, Yelamanchi SK, Sahoo L, Arjunan S, Sastri NP, Chandra N

Abstract: Dengue virus (DENV) is a human pathogen and its etiology has been widely established. There are many interactions between DENV and human proteins that have been reported in literature. However, no publicly accessible resource for efficiently retrieving the information is yet available. In this study, we mined all publicly available dengue-human interactions that have been reported in the literature into a database called DenHunt. We retrieved 682 direct interactions of human proteins with dengue viral components, 382 indirect interactions and 4120 differentially expressed human genes in dengue infected cell lines and patients. We have illustrated the importance of DenHunt by mapping the dengue-human interactions on to the host interactome and observed that the virus targets multiple host functional complexes of important cellular processes such as metabolism, immune system and signaling pathways suggesting a potential role of these interactions in viral pathogenesis. We also observed that 7 percent of the dengue virus interacting human proteins are also associated with other infectious and non-infectious diseases. Finally, the understanding that comes from such analyses could be used to design better strategies to counteract the diseases caused by dengue virus. The whole dataset has been catalogued in a searchable database, called DenHunt (http://proline.biochem.iisc.ernet.in/DenHunt/).
Published in September 2016
READ PUBLICATION →

A Novel Drug-Mouse Phenotypic Similarity Method Detects Molecular Determinants of Drug Effects.

Authors: Prinz J, Vogt I, Adornetto G, Campillos M

Abstract: The molecular mechanisms that translate drug treatment into beneficial and unwanted effects are largely unknown. We present here a novel approach to detect gene-drug and gene-side effect associations based on the phenotypic similarity of drugs and single gene perturbations in mice that account for the polypharmacological property of drugs. We scored the phenotypic similarity of human side effect profiles of 1,667 small molecules and biologicals to profiles of phenotypic traits of 5,384 mouse genes. The benchmarking with known relationships revealed a strong enrichment of physical and indirect drug-target connections, causative drug target-side effect links as well as gene-drug links involved in pharmacogenetic associations among phenotypically similar gene-drug pairs. The validation by in vitro assays and the experimental verification of an unknown connection between oxandrolone and prokineticin receptor 2 reinforces the ability of this method to provide new molecular insights underlying drug treatment. Thus, this approach may aid in the proposal of novel and personalized treatments.
Published in September 2016
READ PUBLICATION →

Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

Authors: Cheng F, Murray JL, Zhao J, Sheng J, Zhao Z, Rubin DH

Abstract: Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.
Published on September 29, 2016
READ PUBLICATION →

Multi-Omics Studies towards Novel Modulators of Influenza A Virus-Host Interaction.

Authors: Soderholm S, Fu Y, Gaelings L, Belanov S, Yetukuri L, Berlinkov M, Cheltsov AV, Anders S, Aittokallio T, Nyman TA, Matikainen S, Kainov DE

Abstract: Human influenza A viruses (IAVs) cause global pandemics and epidemics. These viruses evolve rapidly, making current treatment options ineffective. To identify novel modulators of IAV-host interactions, we re-analyzed our recent transcriptomics, metabolomics, proteomics, phosphoproteomics, and genomics/virtual ligand screening data. We identified 713 potential modulators targeting 199 cellular and two viral proteins. Anti-influenza activity for 48 of them has been reported previously, whereas the antiviral efficacy of the 665 remains unknown. Studying anti-influenza efficacy and immuno/neuro-modulating properties of these compounds and their combinations as well as potential viral and host resistance to them may lead to the discovery of novel modulators of IAV-host interactions, which might be more effective than the currently available anti-influenza therapeutics.
Published on September 28, 2016
READ PUBLICATION →

Prediction of new drug indications based on clinical data and network modularity.

Authors: Yu L, Ma X, Zhang L, Zhang J, Gao L

Abstract: Drug repositioning is commonly done within the drug discovery process in order to adjust or expand the application line of an active molecule. Previous computational methods in this domain mainly focused on shared genes or correlations between genes to construct new drug-disease associations. We propose a method that can not only handle drugs or diseases with or without related genes but consider the network modularity. Our method firstly constructs a drug network and a disease network based on side effects and symptoms respectively. Because similar drugs imply similar diseases, we then cluster the two networks to identify drug and disease modules, and connect all possible drug-disease module pairs. Further, based on known drug-disease associations in CTD and using local connectivity of modules, we predict potential drug-disease associations. Our predictions are validated by testing their overlaps with drug indications reported in published literatures and CTD, and KEGG enrichment analysis are also made on their related genes. The experimental results demonstrate that our approach can complement the current computational approaches and its predictions can provide new clues for the candidate discovery of drug repositioning.
Published on September 28, 2016
READ PUBLICATION →

Cardiovascular Disease Chemogenomics Knowledgebase-guided Target Identification and Drug Synergy Mechanism Study of an Herbal Formula.

Authors: Zhang H, Ma S, Feng Z, Wang D, Li C, Cao Y, Chen X, Liu A, Zhu Z, Zhang J, Zhang G, Chai Y, Wang L, Xie XQ

Abstract: Combination therapy is a popular treatment for various diseases in the clinic. Among the successful cases, Traditional Chinese Medicinal (TCM) formulae can achieve synergistic effects in therapeutics and antagonistic effects in toxicity. However, characterizing the underlying molecular synergisms for the combination of drugs remains a challenging task due to high experimental expenses and complication of multicomponent herbal medicines. To understand the rationale of combination therapy, we investigated Sini Decoction, a well-known TCM consisting of three herbs, as a model. We applied our established diseases-specific chemogenomics databases and our systems pharmacology approach TargetHunter to explore synergistic mechanisms of Sini Decoction in the treatment of cardiovascular diseases. (1) We constructed a cardiovascular diseases-specific chemogenomics database, including drugs, target proteins, chemicals, and associated pathways. (2) Using our implemented chemoinformatics tools, we mapped out the interaction networks between active ingredients of Sini Decoction and their targets. (3) We also in silico predicted and experimentally confirmed that the side effects can be alleviated by the combination of the components. Overall, our results demonstrated that our cardiovascular disease-specific database was successfully applied for systems pharmacology analysis of a complicated herbal formula in predicting molecular synergetic mechanisms, and led to better understanding of a combinational therapy.
Published on September 28, 2016
READ PUBLICATION →

To Unveil the Molecular Mechanisms of Qi and Blood through Systems Biology-Based Investigation into Si-Jun-Zi-Tang and Si-Wu-Tang formulae.

Authors: Sun J, Zhang L, He Y, Zhang K, Wu L, Fan Y, Xie Z

Abstract: Traditional Chinese Medicine (TCM) is increasingly getting clinical application worldwide. But its theory like QI-Blood is still abstract. Actually, Qi deficiency and blood deficiency, which were treated by Si-Jun-Zi-Tang (SJZT) and Si-Wu-Tang (SWT) respectively, have characteristic clinical manifestations. Here, we analyzed targets of the ingredients in SJZT and SWT to unveil potential biologic mechanisms between Qi deficiency and blood deficiency through biomedical approaches. First, ingredients in SWT and SJZT were retrieved from TCMID database. The genes targeted by these ingredients were chosen from STITCH. After enrichment analysis by Gene Ontology (GO) and DAVID, enriched GO terms with p-value less than 0.01 were collected and interpreted through DAVID and KEGG. Then a visualized network was constructed with ClueGO. Finally, a total of 243 genes targeted by 195 ingredients of SWT formula and 209 genes targeted by 61 ingredients of SJZT were obtained. Six metabolism pathways and two environmental information processing pathways enriched by targets were correlated with 2 or more herbs in SWT and SJZT formula, respectively.
Published on September 26, 2016
READ PUBLICATION →

Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd.

Authors: Wang Z, Monteiro CD, Jagodnik KM, Fernandez NF, Gundersen GW, Rouillard AD, Jenkins SL, Feldmann AS, Hu KS, McDermott MG, Duan Q, Clark NR, Jones MR, Kou Y, Goff T, Woodland H, Amaral FMR, Szeto GL, Fuchs O, Schussler-Fiorenza Rose SM, Sharma S, Schwartz U, Bausela XB, Szymkiewicz M, Maroulis V, Salykin A, Barra CM, Kruth CD, Bongio NJ, Mathur V, Todoric RD, Rubin UE, Malatras A, Fulp CT, Galindo JA, Motiejunaite R, Juschke C, Dishuck PC, Lahl K, Jafari M, Aibar S, Zaravinos A, Steenhuizen LH, Allison LR, Gamallo P, de Andres Segura F, Dae Devlin T, Perez-Garcia V, Ma'ayan A

Abstract: Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of themed collections from these studies may provide new insights, but requires further human curation. Here we report a crowdsourcing project to annotate and reanalyse a large number of gene expression profiles from Gene Expression Omnibus (GEO). Through a massive open online course on Coursera, over 70 participants from over 25 countries identify and annotate 2,460 single-gene perturbation signatures, 839 disease versus normal signatures, and 906 drug perturbation signatures. All these signatures are unique and are manually validated for quality. Global analysis of these signatures confirms known associations and identifies novel associations between genes, diseases and drugs. The manually curated signatures are used as a training set to develop classifiers for extracting similar signatures from the entire GEO repository. We develop a web portal to serve these signatures for query, download and visualization.
Published on September 23, 2016
READ PUBLICATION →

Species specific exome probes reveal new insights in positively selected genes in nonhuman primates.

Authors: Su Z, Zhang J, Kumar C, Molony C, Lu H, Chen R, Stone DJ, Ling F, Liu X

Abstract: Nonhuman primates (NHP) are important biomedical animal models for the study of human disease. Of these, the most widely used models in biomedical research currently are from the genus Macaca. However, evolutionary genetic divergence between human and NHP species makes human-based probes inefficient for the capture of genomic regions of NHP for sequencing and study. Here we introduce a new method to resequence the exome of NHP species by a designed capture approach specifically targeted to the NHP, and demonstrate its superior performance on four NHP species or subspecies. Detailed investigation on biomedically relevant genes demonstrated superior capture by the new approach. We identified 28 genes that appeared to be pseudogenized and inactivated in macaque. Finally, we identified 187 genes showing strong evidence for positive selection across all branches of the primate phylogeny including many novel findings.