Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on September 21, 2016
READ PUBLICATION →

Comprehensive Modeling and Discovery of Mebendazole as a Novel TRAF2- and NCK-interacting Kinase Inhibitor.

Authors: Tan Z, Chen L, Zhang S

Abstract: TRAF2- and NCK-interacting kinase (TNIK) represents one of the crucial targets for Wnt-activated colorectal cancer. In this study, we curated two datasets and conducted a comprehensive modeling study to explore novel TNIK inhibitors with desirable biopharmaceutical properties. With Dataset I, we derived Comparative Molecular Similarity Indices Analysis (CoMSIA) and variable-selection k-nearest neighbor models, from which 3D-molecular fields and 2D-descriptors critical for the TNIK inhibitor activity were revealed. Based on Dataset II, predictive CoMSIA-SIMCA (Soft Independent Modelling by Class Analogy) models were obtained and employed to screen 1,448 FDA-approved small molecule drugs. Upon experimental evaluations, we discovered that mebendazole, an approved anthelmintic drug, could selectively inhibit TNIK kinase activity with a dissociation constant Kd = ~1 muM. The subsequent CoMSIA and kNN analyses indicated that mebendazole bears the favorable molecular features that are needed to bind and inhibit TNIK.
Published on September 20, 2016
READ PUBLICATION →

Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties.

Authors: Wang Y, Fang J, Chen S

Abstract: Accurately predicting the response of a cancer patient to a therapeutic agent is a core goal of precision medicine. Existing approaches were mainly relied primarily on genomic alterations in cancer cells that have been treated with different drugs. Here we focus on predicting drug response based on integration of the heterogeneously pharmacogenomics data from both cell and drug sides. Through a systematical approach, named as PDRCC (Predict Drug Response in Cancer Cells), the cancer genomic alterations and compound chemical and therapeutic properties were incorporated to determine the chemotherapeutic response in cancer patients. Using the Cancer Cell Line Encyclopedia (CCLE) study as the benchmark dataset, all pharmacogenomics data exhibited their roles in inferring the relationships between cancer cells and drugs. When integrating both genomic resources and compound information, the prediction coverage was significantly increased. The validity of PDRCC was also supported by its effective in uncovering the unknown cell-drug associations with database and literature evidences. It set the stage for clinical testing of novel therapeutic strategies, such as the sensitive association between cancer cell 'A549_LUNG' and compound 'Topotecan'. In conclusion, PDRCC offers the possibility for faster, safer, and cheaper the development of novel anti-cancer therapeutics in the early-stage clinical trails.
Published on September 20, 2016
READ PUBLICATION →

A corpus for plant-chemical relationships in the biomedical domain.

Authors: Choi W, Kim B, Cho H, Lee D, Lee H

Abstract: BACKGROUND: Plants are natural products that humans consume in various ways including food and medicine. They have a long empirical history of treating diseases with relatively few side effects. Based on these strengths, many studies have been performed to verify the effectiveness of plants in treating diseases. It is crucial to understand the chemicals contained in plants because these chemicals can regulate activities of proteins that are key factors in causing diseases. With the accumulation of a large volume of biomedical literature in various databases such as PubMed, it is possible to automatically extract relationships between plants and chemicals in a large-scale way if we apply a text mining approach. A cornerstone of achieving this task is a corpus of relationships between plants and chemicals. RESULTS: In this study, we first constructed a corpus for plant and chemical entities and for the relationships between them. The corpus contains 267 plant entities, 475 chemical entities, and 1,007 plant-chemical relationships (550 and 457 positive and negative relationships, respectively), which are drawn from 377 sentences in 245 PubMed abstracts. Inter-annotator agreement scores for the corpus among three annotators were measured. The simple percent agreement scores for entities and trigger words for the relationships were 99.6 and 94.8 %, respectively, and the overall kappa score for the classification of positive and negative relationships was 79.8 %. We also developed a rule-based model to automatically extract such plant-chemical relationships. When we evaluated the rule-based model using the corpus and randomly selected biomedical articles, overall F-scores of 68.0 and 61.8 % were achieved, respectively. CONCLUSION: We expect that the corpus for plant-chemical relationships will be a useful resource for enhancing plant research. The corpus is available at http://combio.gist.ac.kr/plantchemicalcorpus .
Published on September 16, 2016
READ PUBLICATION →

ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis.

Authors: Gupta AK, Kaur K, Rajput A, Dhanda SK, Sehgal M, Khan MS, Monga I, Dar SA, Singh S, Nagpal G, Usmani SS, Thakur A, Kaur G, Sharma S, Bhardwaj A, Qureshi A, Raghava GP, Kumar M

Abstract: Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates.
Published on September 15, 2016
READ PUBLICATION →

CART-a chemical annotation retrieval toolkit.

Authors: Deghou S, Zeller G, Iskar M, Driessen M, Castillo M, van Noort V, Bork P

Abstract: MOTIVATION: Data on bioactivities of drug-like chemicals are rapidly accumulating in public repositories, creating new opportunities for research in computational systems pharmacology. However, integrative analysis of these data sets is difficult due to prevailing ambiguity between chemical names and identifiers and a lack of cross-references between databases. RESULTS: To address this challenge, we have developed CART, a Chemical Annotation Retrieval Toolkit. As a key functionality, it matches an input list of chemical names into a comprehensive reference space to assign unambiguous chemical identifiers. In this unified space, bioactivity annotations can be easily retrieved from databases covering a wide variety of chemical effects on biological systems. Subsequently, CART can determine annotations enriched in the input set of chemicals and display these in tabular format and interactive network visualizations, thereby facilitating integrative analysis of chemical bioactivity data. AVAILABILITY AND IMPLEMENTATION: CART is available as a Galaxy web service (cart.embl.de). Source code and an easy-to-install command line tool can also be obtained from the web site. CONTACT: bork@embl.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Published on September 14, 2016
READ PUBLICATION →

From linked open data to molecular interaction: studying selectivity trends for ligands of the human serotonin and dopamine transporter.

Authors: Zdrazil B, Hellsberg E, Viereck M, Ecker GF

Abstract: Retrieval of congeneric and consistent SAR data sets for protein targets of interest is still a laborious task to do if no appropriate in-house data set is available. However, combining integrated open data sources (such as the Open PHACTS Discovery Platform) with workflow tools now offers the possibility of querying across multiple domains and tailoring the search to the given research question. Starting from two phylogenetically related protein targets of interest (the human serotonin and dopamine transporters), the whole chemical compound space was explored by implementing a scaffold-based clustering of compounds possessing biological measurements for both targets. In addition, potential hERG blocking liabilities were included. The workflow allowed studying the selectivity trends of scaffold series, identifying potentially harmful compound series, and performing SAR, docking studies and molecular dynamics (MD) simulations for a consistent data set of 56 cathinones. This delivered useful insights into driving determinants for hDAT selectivity over hSERT. With respect to the scaffold-based analyses it should be noted that the cathinone data set could be retrieved only when Murcko scaffold analyses were combined with similarity searches such as a common substructure search.
Published on September 7, 2016
READ PUBLICATION →

Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing.

Authors: Udrescu L, Sbarcea L, Topirceanu A, Iovanovici A, Kurunczi L, Bogdan P, Udrescu M

Abstract: Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to complex network science. Our methodology uncovers functional drug categories along with the intricate relationships between them. Using modularity-based and energy-model layout community detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the predicted property. Also, by using network centralities, we can rank drugs according to their interaction potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach can be extended for applications such as analyzing drug-target interactions or phenotyping patients in personalized medicine applications.
Published on September 6, 2016
READ PUBLICATION →

Systems Pharmacology Dissection of the Integrated Treatment for Cardiovascular and Gastrointestinal Disorders by Traditional Chinese Medicine.

Authors: Zhang W, Tao Q, Guo Z, Fu Y, Chen X, Shar PA, Shahen M, Zhu J, Xue J, Bai Y, Wu Z, Wang Z, Xiao W, Wang Y

Abstract: Though cardiovascular diseases (CVDs) and gastrointestinal disorders (GIDs) are different diseases associated with different organs, they are highly correlated clinically. Importantly, in Traditional Chinese Medicine (TCM), similar treatment strategies have been applied in both diseases. However, the etiological mechanisms underlying them remain unclear. Here, an integrated systems pharmacology approach is presented for illustrating the molecular correlations between CVDs and GIDs. Firstly, we identified pairs of genes that are associated with CVDs and GIDs and found that these genes are functionally related. Then, the association between 115 heart meridian (HM) herbs and 163 stomach meridian (SM) herbs and their combination application in Chinese patent medicine was investigated, implying that both CVDs and GIDs can be treated by the same strategy. Exemplified by a classical formula Sanhe Decoration (SHD) treating chronic gastritis, we applied systems-based analysis to introduce a drug-target-pathway-organ network that clarifies mechanisms of different diseases being treated by the same strategy. The results indicate that SHD regulated several pathological processes involved in both CVDs and GIDs. We experimentally confirmed the predictions implied by the effect of SHD for myocardial ischemia. The systems pharmacology suggests a novel integrated strategy for rational drug development for complex associated diseases.
Published on September 1, 2016
READ PUBLICATION →

Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion.

Authors: Kramer CE, Wiechert W, Kohlheyer D

Abstract: Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 muM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
Published in August 2016
READ PUBLICATION →

Computational Drug Repositioning Using Continuous Self-Controlled Case Series.

Authors: Kuang Z, Thomson J, Caldwell M, Peissig P, Stewart R, Page D

Abstract: Computational Drug Repositioning (CDR) is the task of discovering potential new indications for existing drugs by mining large-scale heterogeneous drug-related data sources. Leveraging the patient-level temporal ordering information between numeric physiological measurements and various drug prescriptions provided in Electronic Health Records (EHRs), we propose a Continuous Self-controlled Case Series (CSCCS) model for CDR. As an initial evaluation, we look for drugs that can control Fasting Blood Glucose (FBG) level in our experiments. Applying CSCCS to the Marshfield Clinic EHR, well-known drugs that are indicated for controlling blood glucose level are rediscovered. Furthermore, some drugs with recent literature support for the potential effect of blood glucose level control are also identified.