Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2013
READ PUBLICATION →

Network characteristic analysis of ADR-related proteins and identification of ADR-ADR associations.

Authors: Chen X, Liu X, Jia X, Tan F, Yang R, Chen S, Liu L, Wang Y, Chen Y

Abstract: Adverse drug reactions (ADRs) are caused by interactions between drugs or their metabolites and specific proteins. Knowledge of these proteins is important for facilitating mechanistic research of ADRs and new drug discovery. Here, we identified 41 network modules from an ADR-protein network; analysed the function of each module; revealed the potential accompanying actions of the ADRs and the new ADR-related proteins (ADRPs) to a unique ADR and studied the characteristics of composition, subcellular location and tissue distribution of these ADRPs by comparing them with drug-related proteins (DRPs). The results indicated that ADRs are mainly caused by risk drug-related proteins (RDRPs) and that drug off-target effects are a secondary cause. Biological processes that enzymes involve are the main reason for the occurrence of ADRs. However, drug-related transporters have a higher risk of inducing ADRs than drug-related enzymes do, and ADRPs locating in the cell membrane tend to induce multiple ADRs.
Published in 2013
READ PUBLICATION →

A systematic in silico search for target similarity identifies several approved drugs with potential activity against the Plasmodium falciparum apicoplast.

Authors: Bispo NA, Culleton R, Silva LA, Cravo P

Abstract: Most of the drugs in use against Plasmodium falciparum share similar modes of action and, consequently, there is a need to identify alternative potential drug targets. Here, we focus on the apicoplast, a malarial plastid-like organelle of algal source which evolved through secondary endosymbiosis. We undertake a systematic in silico target-based identification approach for detecting drugs already approved for clinical use in humans that may be able to interfere with the P. falciparum apicoplast. The P. falciparum genome database GeneDB was used to compile a list of approximately 600 proteins containing apicoplast signal peptides. Each of these proteins was treated as a potential drug target and its predicted sequence was used to interrogate three different freely available databases (Therapeutic Target Database, DrugBank and STITCH3.1) that provide synoptic data on drugs and their primary or putative drug targets. We were able to identify several drugs that are expected to interact with forty-seven (47) peptides predicted to be involved in the biology of the P. falciparum apicoplast. Fifteen (15) of these putative targets are predicted to have affinity to drugs that are already approved for clinical use but have never been evaluated against malaria parasites. We suggest that some of these drugs should be experimentally tested and/or serve as leads for engineering new antimalarials.
Published in 2013
READ PUBLICATION →

Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: a novel hierarchical in silico approach.

Authors: Shanmugham B, Pan A

Abstract: Mycobacterium abscessus, a non-tuberculous rapidly growing mycobacterium, is recognized as an emerging human pathogen causing a variety of infections ranging from skin and soft tissue infections to severe pulmonary infections. Lack of an optimal treatment regimen and emergence of multi-drug resistance in clinical isolates necessitate the development of better/new drugs against this pathogen. The present study aims at identification and qualitative characterization of promising drug targets in M. abscessus using a novel hierarchical in silico approach, encompassing three phases of analyses. In phase I, five sets of proteins were mined through chokepoint, plasmid, pathway, virulence factors, and resistance genes and protein network analysis. These were filtered in phase II, in order to find out promising drug target candidates through subtractive channel of analysis. The analysis resulted in 40 therapeutic candidates which are likely to be essential for the survival of the pathogen and non-homologous to host, human anti-targets, and gut flora. Many of the identified targets were found to be involved in different metabolisms (viz., amino acid, energy, carbohydrate, fatty acid, and nucleotide), xenobiotics degradation, and bacterial pathogenicity. Finally, in phase III, the candidate targets were qualitatively characterized through cellular localization, broad spectrum, interactome, functionality, and druggability analysis. The study explained their subcellular location identifying drug/vaccine targets, possibility of being broad spectrum target candidate, functional association with metabolically interacting proteins, cellular function (if hypothetical), and finally, druggable property. Outcome of the present study could facilitate the identification of novel antibacterial agents for better treatment of M. abscesses infections.
Published in 2013
READ PUBLICATION →

Chemical structure identification in metabolomics: computational modeling of experimental features.

Authors: Menikarachchi LC, Hamdalla MA, Hill DW, Grant DF

Abstract: The identification of compounds in complex mixtures remains challenging despite recent advances in analytical techniques. At present, no single method can detect and quantify the vast array of compounds that might be of potential interest in metabolomics studies. High performance liquid chromatography/mass spectrometry (HPLC/MS) is often considered the analytical method of choice for analysis of biofluids. The positive identification of an unknown involves matching at least two orthogonal HPLC/MS measurements (exact mass, retention index, drift time etc.) against an authentic standard. However, due to the limited availability of authentic standards, an alternative approach involves matching known and measured features of the unknown compound with computationally predicted features for a set of candidate compounds downloaded from a chemical database. Computationally predicted features include retention index, ECOM50 (energy required to decompose 50% of a selected precursor ion in a collision induced dissociation cell), drift time, whether the unknown compound is biological or synthetic and a collision induced dissociation (CID) spectrum. Computational predictions are used to filter the initial "bin" of candidate compounds. The final output is a ranked list of candidates that best match the known and measured features. In this mini review, we discuss cheminformatics methods underlying this database search-filter identification approach.
Published in 2013
READ PUBLICATION →

KCF-S: KEGG Chemical Function and Substructure for improved interpretability and prediction in chemical bioinformatics.

Authors: Kotera M, Tabei Y, Yamanishi Y, Moriya Y, Tokimatsu T, Kanehisa M, Goto S

Abstract: BACKGROUND: In order to develop hypothesis on unknown metabolic pathways, biochemists frequently rely on literature that uses a free-text format to describe functional groups or substructures. In computational chemistry or cheminformatics, molecules are typically represented by chemical descriptors, i.e., vectors that summarize information on its various properties. However, it is difficult to interpret these chemical descriptors since they are not directly linked to the terminology of functional groups or substructures that the biochemists use. METHODS: In this study, we used KEGG Chemical Function (KCF) format to computationally describe biochemical substructures in seven attributes that resemble biochemists' way of dealing with substructures. RESULTS: We established KCF-S (KCF-and-Substructures) format as an additional structural information of KCF. Applying KCF-S revealed the specific appearance of substructures from various datasets of molecules that describes the characteristics of the respective datasets. Structure-based clustering of molecules using KCF-S resulted the clusters in which molecular weights and structures were less diverse than those obtained by conventional chemical fingerprints. We further applied KCF-S to find the pairs of molecules that are possibly converted to each other in enzymatic reactions, and KCF-S clearly improved predictive performance than that presented previously. CONCLUSIONS: KCF-S defines biochemical substructures with keeping interpretability, suggesting the potential to apply more studies on chemical bioinformatics. KCF and KCF-S can be automatically converted from Molfile format, enabling to deal with molecules from any data sources.
Published in 2013
READ PUBLICATION →

Analysis of schizophrenia and hepatocellular carcinoma genetic network with corresponding modularity and pathways: novel insights to the immune system.

Authors: Huang KC, Yang KC, Lin H, Tsao Tsun-Hui T, Lee WK, Lee SA, Kao CY

Abstract: BACKGROUND: Schizophrenic patients show lower incidences of cancer, implicating schizophrenia may be a protective factor against cancer. To study the genetic correlation between the two diseases, a specific PPI network was constructed with candidate genes of both schizophrenia and hepatocellular carcinoma. The network, designated schizophrenia-hepatocellular carcinoma network (SHCN), was analysed and cliques were identified as potential functional modules or complexes. The findings were compared with information from pathway databases such as KEGG, Reactome, PID and ConsensusPathDB. RESULTS: The functions of mediator genes from SHCN show immune system and cell cycle regulation have important roles in the eitology mechanism of schizophrenia. For example, the over-expressing schizophrenia candidate genes, SIRPB1, SYK and LCK, are responsible for signal transduction in cytokine production; immune responses involving IL-2 and TREM-1/DAP12 pathways are relevant for the etiology mechanism of schizophrenia. Novel treatments were proposed by searching the target genes of FDA approved drugs with genes in potential protein complexes and pathways. It was found that Vitamin A, retinoid acid and a few other immune response agents modulated by RARA and LCK genes may be potential treatments for both schizophrenia and hepatocellular carcinoma. CONCLUSIONS: This is the first study showing specific mediator genes in the SHCN which may suppress tumors. We also show that the schizophrenic protein interactions and modulation with cancer implicates the importance of immune system for etiology of schizophrenia.
Published in 2013
READ PUBLICATION →

Extending the "web of drug identity" with knowledge extracted from United States product labels.

Authors: Hassanzadeh O, Zhu Q, Freimuth R, Boyce R

Abstract: Structured Product Labels (SPLs) contain information about drugs that can be valuable to clinical and translational research, especially if it can be linked to other sources that provide data about drug targets, chemical properties, interactions, and biological pathways. Unfortunately, SPLs currently provide coarsely-structured drug information and lack the detailed annotation that is required to support computational use cases. To help address this issue we created LinkedSPLs, a Linked Data resource that extends the "web of drug identity" using information extracted from SPLs. In this paper we describe the mapping that LinkedSPLs provides between SPL active ingredients and DrugBank chemical entities. These mappings were created using three approaches: InChI chemical structure descriptors comparison, exact string matching based on the chemical name, and automatic (unsupervised) linkage identification. Comparison of the approaches found that, while these three approaches are complementary, the automatic approach performs well in terms of precision and recall.
Published in 2013
READ PUBLICATION →

Can the anti-inflammatory activities of beta2-agonists be harnessed in the clinical setting?

Authors: Theron AJ, Steel HC, Tintinger GR, Feldman C, Anderson R

Abstract: Beta2-adrenoreceptor agonists (beta2-agonists) are primarily bronchodilators, targeting airway smooth muscle and providing critical symptomatic relief in conditions such as bronchial asthma and chronic obstructive pulmonary disease. These agents also possess broad-spectrum, secondary, anti-inflammatory properties. These are mediated largely, though not exclusively, via interactions with adenylyl cyclase-coupled beta2-adrenoreceptors on a range of immune and inflammatory cells involved in the immunopathogenesis of acute and chronic inflammatory disorders of the airways. The clinical relevance of the anti-inflammatory actions of beta2-agonists, although often effective in the experimental setting, remains contentious. The primary objectives of the current review are: firstly, to assess the mechanisms, both molecular and cell-associated, that may limit the anti-inflammatory efficacy of beta2-agonists; secondly, to evaluate pharmacological strategies, several of which are recent and innovative, that may overcome these limitations. These are preceded by a consideration of the various types of beta2-agonists, their clinical applications, and spectrum of anti-inflammatory activities, particularly those involving adenosine 3',5'-cyclic adenosine monophosphate-activated protein kinase-mediated clearance of cytosolic calcium, and altered gene expression in immune and inflammatory cells.
Published in 2013
READ PUBLICATION →

Pharmacokinetics of drugs in cachectic patients: a systematic review.

Authors: Trobec K, Kerec Kos M, von Haehling S, Springer J, Anker SD, Lainscak M

Abstract: Cachexia is a weight-loss process caused by an underlying chronic disease such as cancer, chronic heart failure, chronic obstructive pulmonary disease, or rheumatoid arthritis. It leads to changes in body structure and function that may influence the pharmacokinetics of drugs. Changes in gut function and decreased subcutaneous tissue may influence the absorption of orally and transdermally applied drugs. Altered body composition and plasma protein concentration may affect drug distribution. Changes in the expression and function of metabolic enzymes could influence the metabolism of drugs, and their renal excretion could be affected by possible reduction in kidney function. Because no general guidelines exist for drug dose adjustments in cachectic patients, we conducted a systematic search to identify articles that investigated the pharmacokinetics of drugs in cachectic patients.
Published in 2013
READ PUBLICATION →

Controllability in cancer metabolic networks according to drug targets as driver nodes.

Authors: Asgari Y, Salehzadeh-Yazdi A, Schreiber F, Masoudi-Nejad A

Abstract: Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine.