Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2013
READ PUBLICATION →

B-cell lymphoma gene regulatory networks: biological consistency among inference methods.

Authors: de Matos Simoes R, Dehmer M, Emmert-Streib F

Abstract: Despite the development of numerous gene regulatory network (GRN) inference methods in the last years, their application, usage and the biological significance of the resulting GRN remains unclear for our general understanding of large-scale gene expression data in routine practice. In our study, we conduct a structural and a functional analysis of B-cell lymphoma GRNs that were inferred using 3 mutual information-based GRN inference methods: C3Net, BC3Net and Aracne. From a comparative analysis on the global level, we find that the inferred B-cell lymphoma GRNs show major differences. However, on the edge-level and the functional-level-that are more important for our biological understanding-the B-cell lymphoma GRNs were highly similar among each other. Also, the ranks of the degree centrality values and major hub genes in the inferred networks are highly conserved as well. Interestingly, the major hub genes of all GRNs are associated with the G-protein-coupled receptor pathway, cell-cell signaling and cell cycle. This implies that hub genes of the GRNs can be highly consistently inferred with C3Net, BC3Net, and Aracne, representing prominent targets for signaling pathways. Finally, we describe the functional and structural relationship between C3Net, BC3Net and Aracne gene regulatory networks. Our study shows that these GRNs that are inferred from large-scale gene expression data are promising for the identification of novel candidate interactions and pathways that play a key role in the underlying mechanisms driving cancer hallmarks. Overall, our comparative analysis reveals that these GRNs inferred with considerably different inference methods contain large amounts of consistent, method independent, biological information.
Published in 2013
READ PUBLICATION →

A Module Analysis Approach to Investigate Molecular Mechanism of TCM Formula: A Trial on Shu-feng-jie-du Formula.

Authors: Song J, Zhang F, Tang S, Liu X, Gao Y, Lu P, Wang Y, Yang H

Abstract: At the molecular level, it is acknowledged that a TCM formula is often a complex system, which challenges researchers to fully understand its underlying pharmacological action. However, module detection technique developed from complex network provides new insight into systematic investigation of the mode of action of a TCM formula from the molecule perspective. We here proposed a computational approach integrating the module detection technique into a 2-class heterogeneous network (2-HN) which models the complex pharmacological system of a TCM formula. This approach takes three steps: construction of a 2-HN, identification of primary pharmacological units, and pathway analysis. We employed this approach to study Shu-feng-jie-du (SHU) formula, which aimed at discovering its molecular mechanism in defending against influenza infection. Actually, four primary pharmacological units were identified from the 2-HN for SHU formula and further analysis revealed numbers of biological pathways modulated by the four pharmacological units. 24 out of 40 enriched pathways that were ranked in top 10 corresponding to each of the four pharmacological units were found to be involved in the process of influenza infection. Therefore, this approach is capable of uncovering the mode of action underlying a TCM formula via module analysis.
Published in 2013
READ PUBLICATION →

Amyloid-precursor-protein-lowering small molecules for disease modifying therapy of Alzheimer's disease.

Authors: Rosenkranz SC, Geissen M, Harter K, Szalay B, Ferrer I, Vogel J, Smith S, Glatzel M

Abstract: Alzheimer's disease (AD) is the most common form of dementia in the elderly with progressive cognitive decline and memory loss. According to the amyloid-hypothesis, AD is caused by generation and subsequent cerebral deposition of beta-amyloid (Abeta). Abeta is generated through sequential cleavage of the transmembrane Amyloid-Precursor-Protein (APP) by two endoproteinases termed beta- and gamma-secretase. Increased APP-expression caused by APP gene dosage effects is a risk factor for the development of AD. Here we carried out a large scale screen for novel compounds aimed at decreasing APP-expression. For this we developed a screening system employing a cell culture model of AD. A total of 10,000 substances selected for their ability of drug-likeness and chemical diversity were tested for their potential to decrease APP-expression resulting in reduced Abeta-levels. Positive compounds were further evaluated for their effect at lower concentrations, absence of cytotoxicity and specificity. The six most promising compounds were characterized and structure function relationships were established. The novel compounds presented here provide valuable information for the development of causal therapies for AD.
Published in 2013
READ PUBLICATION →

Multiplex cytological profiling assay to measure diverse cellular states.

Authors: Gustafsdottir SM, Ljosa V, Sokolnicki KL, Anthony Wilson J, Walpita D, Kemp MM, Petri Seiler K, Carrel HA, Golub TR, Schreiber SL, Clemons PA, Carpenter AE, Shamji AF

Abstract: Computational methods for image-based profiling are under active development, but their success hinges on assays that can capture a wide range of phenotypes. We have developed a multiplex cytological profiling assay that "paints the cell" with as many fluorescent markers as possible without compromising our ability to extract rich, quantitative profiles in high throughput. The assay detects seven major cellular components. In a pilot screen of bioactive compounds, the assay detected a range of cellular phenotypes and it clustered compounds with similar annotated protein targets or chemical structure based on cytological profiles. The results demonstrate that the assay captures subtle patterns in the combination of morphological labels, thereby detecting the effects of chemical compounds even though their targets are not stained directly. This image-based assay provides an unbiased approach to characterize compound- and disease-associated cell states to support future probe discovery.
Published in 2013
READ PUBLICATION →

Automated Detection of Systematic Off-label Drug Use in Free Text of Electronic Medical Records.

Authors: Jung K, Lependu P, Shah N

Abstract: Off-label use of a drug occurs when it is used in a manner that deviates from its FDA label. Studies estimate that 21% of prescriptions are off-label, with only 27% of those uses supported by evidence of safety and efficacy. We have developed methods to detect population level off-label usage using computationally efficient annotation of free text from clinical notes to generate features encoding empirical information about drug-disease mentions. By including additional features encoding prior knowledge about drugs, diseases, and known usage, we trained a highly accurate predictive model that was used to detect novel candidate off-label usages in a very large clinical corpus. We show that the candidate uses are plausible and can be prioritized for further analysis in terms of safety and efficacy.
Published in 2013
READ PUBLICATION →

Predicting drug-target interactions using drug-drug interactions.

Authors: Kim S, Jin D, Lee H

Abstract: Computational methods for predicting drug-target interactions have become important in drug research because they can help to reduce the time, cost, and failure rates for developing new drugs. Recently, with the accumulation of drug-related data sets related to drug side effects and pharmacological data, it has became possible to predict potential drug-target interactions. In this study, we focus on drug-drug interactions (DDI), their adverse effects ([Formula: see text]) and pharmacological information ([Formula: see text]), and investigate the relationship among chemical structures, side effects, and DDIs from several data sources. In this study, [Formula: see text] data from the STITCH database, [Formula: see text] from drugs.com, and drug-target pairs from ChEMBL and SIDER were first collected. Then, by applying two machine learning approaches, a support vector machine (SVM) and a kernel-based L1-norm regularized logistic regression (KL1LR), we showed that DDI is a promising feature in predicting drug-target interactions. Next, the accuracies of predicting drug-target interactions using DDI were compared to those obtained using the chemical structure and side effects based on the SVM and KL1LR approaches, showing that DDI was the data source contributing the most for predicting drug-target interactions.
Published in 2013
READ PUBLICATION →

Exploring drug-target interaction networks of illicit drugs.

Authors: Atreya RV, Sun J, Zhao Z

Abstract: BACKGROUND: Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit drugs and their targets in order to elucidate their interaction patterns and potential secondary drugs that can aid future research and clinical care. RESULTS: In this study, we extracted 188 illicit substances and their related information from the DrugBank database. The data process revealed 86 illicit drugs targeting a total of 73 unique human genes, which forms an illicit drug-target network. Compared to the full drug-target network from DrugBank, illicit drugs and their target genes tend to cluster together and form four subnetworks, corresponding to four major medication categories: depressants, stimulants, analgesics, and steroids. External analysis of Anatomical Therapeutic Chemical (ATC) second sublevel classifications confirmed that the illicit drugs have neurological functions or act via mechanisms of stimulants, opioids, and steroids. To further explore other drugs potentially having associations with illicit drugs, we constructed an illicit-extended drug-target network by adding the drugs that have the same target(s) as illicit drugs to the illicit drug-target network. After analyzing the degree and betweenness of the network, we identified hubs and bridge nodes, which might play important roles in the development and treatment of drug addiction. Among them, 49 non-illicit drugs might have potential to be used to treat addiction or have addictive effects, including some results that are supported by previous studies. CONCLUSIONS: This study presents the first systematic review of the network characteristics of illicit drugs, their targets, and other drugs that share the targets of these illicit drugs. The results, though preliminary, provide some novel insights into the molecular mechanisms of drug addiction. The observation of illicit-related drugs, with partial verification from previous studies, demonstrated that the network-assisted approach is promising for the identification of drug repositioning.
Published in 2013
READ PUBLICATION →

SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics.

Authors: Zhang F, Drabier R

Abstract: BACKGROUND: Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from proteomics. RESULTS: We used a three-step pipeline to create a synthetic alternative splicing database (SASD) to identify novel alternative splicing isoforms and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. First, we extracted information on gene structures of all genes in the Ensembl Genes 71 database and incorporated the Integrated Pathway Analysis Database. Then, we compiled artificial splicing transcripts. Lastly, we translated the artificial transcripts into alternative splicing peptides. CONCLUSIONS: The SASD provides the scientific community with an efficient means to identify, analyze, and characterize novel Exon Skipping and Intron Retention protein isoforms from mass spectrometry and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing.
Published in 2013
READ PUBLICATION →

A Drug-Target Network-Based Approach to Evaluate the Efficacy of Medicinal Plants for Type II Diabetes Mellitus.

Authors: Gu J, Chen L, Yuan G, Xu X

Abstract: The use of plants as natural medicines in the treatment of type II diabetes mellitus (T2DM) has long been of special interest. In this work, we developed a docking score-weighted prediction model based on drug-target network to evaluate the efficacy of medicinal plants for T2DM. High throughput virtual screening from chemical library of natural products was adopted to calculate the binding affinity between natural products contained in medicinal plants and 33 T2DM-related proteins. The drug-target network was constructed according to the strength of the binding affinity if the molecular docking score satisfied the threshold. By linking the medicinal plant with T2DM through drug-target network, the model can predict the efficacy of natural products and medicinal plant for T2DM. Eighteen thousand nine hundred ninety-nine natural products and 1669 medicinal plants were predicted to be potentially bioactive.
Published in 2013
READ PUBLICATION →

Prediction of the P. falciparum target space relevant to malaria drug discovery.

Authors: Spitzmuller A, Mestres J

Abstract: Malaria is still one of the most devastating infectious diseases, affecting hundreds of millions of patients worldwide. Even though there are several established drugs in clinical use for malaria treatment, there is an urgent need for new drugs acting through novel mechanisms of action due to the rapid development of resistance. Resistance emerges when the parasite manages to mutate the sequence of the drug targets to the extent that the protein can still perform its function in the parasite but can no longer be inhibited by the drug, which then becomes almost ineffective. The design of a new generation of malaria drugs targeting multiple essential proteins would make it more difficult for the parasite to develop full resistance without lethally disrupting some of its vital functions. The challenge is then to identify which set of Plasmodium falciparum proteins, among the millions of possible combinations, can be targeted at the same time by a given chemotype. To do that, we predicted first the targets of the close to 20,000 antimalarial hits identified recently in three independent phenotypic screening campaigns. All targets predicted were then projected onto the genome of P. falciparum using orthologous relationships. A total of 226 P. falciparum proteins were predicted to be hit by at least one compound, of which 39 were found to be significantly enriched by the presence and degree of affinity of phenotypically active compounds. The analysis of the chemically compatible target combinations containing at least one of those 39 targets led to the identification of a priority set of 64 multi-target profiles that can set the ground for a new generation of more robust malaria drugs.