Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on November 22, 2013
READ PUBLICATION →

PAV ontology: provenance, authoring and versioning.

Authors: Ciccarese P, Soiland-Reyes S, Belhajjame K, Gray AJ, Goble C, Clark T

Abstract: BACKGROUND: Provenance is a critical ingredient for establishing trust of published scientific content. This is true whether we are considering a data set, a computational workflow, a peer-reviewed publication or a simple scientific claim with supportive evidence. Existing vocabularies such as Dublin Core Terms (DC Terms) and the W3C Provenance Ontology (PROV-O) are domain-independent and general-purpose and they allow and encourage for extensions to cover more specific needs. In particular, to track authoring and versioning information of web resources, PROV-O provides a basic methodology but not any specific classes and properties for identifying or distinguishing between the various roles assumed by agents manipulating digital artifacts, such as author, contributor and curator. RESULTS: We present the Provenance, Authoring and Versioning ontology (PAV, namespace http://purl.org/pav/): a lightweight ontology for capturing "just enough" descriptions essential for tracking the provenance, authoring and versioning of web resources. We argue that such descriptions are essential for digital scientific content. PAV distinguishes between contributors, authors and curators of content and creators of representations in addition to the provenance of originating resources that have been accessed, transformed and consumed. We explore five projects (and communities) that have adopted PAV illustrating their usage through concrete examples. Moreover, we present mappings that show how PAV extends the W3C PROV-O ontology to support broader interoperability. METHOD: The initial design of the PAV ontology was driven by requirements from the AlzSWAN project with further requirements incorporated later from other projects detailed in this paper. The authors strived to keep PAV lightweight and compact by including only those terms that have demonstrated to be pragmatically useful in existing applications, and by recommending terms from existing ontologies when plausible. DISCUSSION: We analyze and compare PAV with related approaches, namely Provenance Vocabulary (PRV), DC Terms and BIBFRAME. We identify similarities and analyze differences between those vocabularies and PAV, outlining strengths and weaknesses of our proposed model. We specify SKOS mappings that align PAV with DC Terms. We conclude the paper with general remarks on the applicability of PAV.
Published on November 15, 2013
READ PUBLICATION →

Discovering disease-disease associations by fusing systems-level molecular data.

Authors: Zitnik M, Janjic V, Larminie C, Zupan B, Przulj N

Abstract: The advent of genome-scale genetic and genomic studies allows new insight into disease classification. Recently, a shift was made from linking diseases simply based on their shared genes towards systems-level integration of molecular data. Here, we aim to find relationships between diseases based on evidence from fusing all available molecular interaction and ontology data. We propose a multi-level hierarchy of disease classes that significantly overlaps with existing disease classification. In it, we find 14 disease-disease associations currently not present in Disease Ontology and provide evidence for their relationships through comorbidity data and literature curation. Interestingly, even though the number of known human genetic interactions is currently very small, we find they are the most important predictor of a link between diseases. Finally, we show that omission of any one of the included data sources reduces prediction quality, further highlighting the importance in the paradigm shift towards systems-level data fusion.
Published on November 7, 2013
READ PUBLICATION →

HMPAS: Human Membrane Protein Analysis System.

Authors: Kim MS, Yi GS

Abstract: BACKGROUND: Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. METHODS: We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences. RESULTS: We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins. CONCLUSIONS: HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas.
Published on November 5, 2013
READ PUBLICATION →

DrugMint: a webserver for predicting and designing of drug-like molecules.

Authors: Dhanda SK, Singla D, Mondal AK, Raghava GP

Abstract: BACKGROUND: Identification of drug-like molecules is one of the major challenges in the field of drug discovery. Existing approach like Lipinski rule of 5 (Ro5), Operea have their own limitations. Thus, there is a need to develop computational method that can predict drug-likeness of a molecule with precision. In addition, there is a need to develop algorithm for screening chemical library for their drug-like properties. RESULTS: In this study, we have used 1347 approved and 3206 experimental drugs for developing a knowledge-based computational model for predicting drug-likeness of a molecule. We have used freely available PaDEL software for computing molecular fingerprints/descriptors of the molecules for developing prediction models. Weka software has been used for feature selection in order to identify the best fingerprints. We have developed various classification models using different types of fingerprints like Estate, PubChem, Extended, FingerPrinter, MACCS keys, GraphsOnlyFP, SubstructureFP, Substructure FPCount, Klekota-RothFP, Klekota-Roth FPCount. It was observed that the models developed using MACCS keys based fingerprints, discriminated approved and experimental drugs with higher precision. Our model based on one hundred fifty nine MACCS keys predicted drug-likeness of the molecules with 89.96% accuracy along with 0.77 MCC. Our analysis indicated that MACCS keys (ISIS keys) 112, 122, 144, and 150 were highly prevalent in the approved drugs. The screening of ZINC (drug-like) and ChEMBL databases showed that around 78.33% and 72.43% of the compounds present in these databases had drug-like potential. CONCLUSION: It was apparent from above study that the binary fingerprints could be used to discriminate approved and experimental drugs with high accuracy. In order to facilitate researchers working in the field of drug discovery, we have developed a webserver for predicting, designing, and screening novel drug-like molecules (http://crdd.osdd.net/oscadd/drugmint/).
Published on November 5, 2013
READ PUBLICATION →

Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.

Authors: Li J, Bennett K, Stukalov A, Fang B, Zhang G, Yoshida T, Okamoto I, Kim JY, Song L, Bai Y, Qian X, Rawal B, Schell M, Grebien F, Winter G, Rix U, Eschrich S, Colinge J, Koomen J, Superti-Furga G, Haura EB

Abstract: We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.
Published in October 2013
READ PUBLICATION →

Comparison of ultra-fast 2D and 3D ligand and target descriptors for side effect prediction and network analysis in polypharmacology.

Authors: Cortes-Cabrera A, Morris GM, Finn PW, Morreale A, Gago F

Abstract: BACKGROUND AND PURPOSE: Some existing computational methods are used to infer protein targets of small molecules and can therefore be used to find new targets for existing drugs, with the goals of re-directing the molecule towards a different therapeutic purpose or explaining off-target effects due to multiple targeting. Inherent limitations, however, arise from the fact that chemical analogy is calculated on the basis of common frameworks or scaffolds and also because target information is neglected. The method we present addresses these issues by taking into account 3D information from both the ligand and the target. EXPERIMENTAL APPROACH: ElectroShape is an established method for ultra-fast comparison of the shapes and charge distributions of ligands that is validated here for prediction of on-target activities, off-target profiles and adverse effects of drugs and drug-like molecules taken from the DrugBank database. KEY RESULTS: The method is shown to predict polypharmacology profiles and relate targets from two complementary viewpoints (ligand- and target-based networks). CONCLUSIONS AND IMPLICATIONS: The open-access web tool presented here (http://ub.cbm.uam.es/chemogenomics/) allows interactive navigation in a unified 'pharmacological space' from the viewpoints of both ligands and targets. It also enables prediction of pharmacological profiles, including likely side effects, for new compounds. We hope this web interface will help many pharmacologists to become aware of this new paradigm (up to now mostly used in the realm of the so-called 'chemical biology') and encourage its use with a view to revealing 'hidden' relationships between new and existing compounds and pharmacologically relevant targets.
Published in October 2013
READ PUBLICATION →

Computational methods for drug design and discovery: focus on China.

Authors: Zheng M, Liu X, Xu Y, Li H, Luo C, Jiang H

Abstract: In the past decades, China's computational drug design and discovery research has experienced fast development through various novel methodologies. Application of these methods spans a wide range, from drug target identification to hit discovery and lead optimization. In this review, we firstly provide an overview of China's status in this field and briefly analyze the possible reasons for this rapid advancement. The methodology development is then outlined. For each selected method, a short background precedes an assessment of the method with respect to the needs of drug discovery, and, in particular, work from China is highlighted. Furthermore, several successful applications of these methods are illustrated. Finally, we conclude with a discussion of current major challenges and future directions of the field.
Published on October 28, 2013
READ PUBLICATION →

Using molecular features of xenobiotics to predict hepatic gene expression response.

Authors: Fernald GH, Altman RB

Abstract: Despite recent advances in molecular medicine and rational drug design, many drugs still fail because toxic effects arise at the cellular and tissue level. In order to better understand these effects, cellular assays can generate high-throughput measurements of gene expression changes induced by small molecules. However, our understanding of how the chemical features of small molecules influence gene expression is very limited. Therefore, we investigated the extent to which chemical features of small molecules can reliably be associated with significant changes in gene expression. Specifically, we analyzed the gene expression response of rat liver cells to 170 different drugs and searched for genes whose expression could be related to chemical features alone. Surprisingly, we can predict the up-regulation of 87 genes (increased expression of at least 1.5 times compared to controls). We show an average cross-validation predictive area under the receiver operating characteristic curve (AUROC) of 0.7 or greater for each of these 87 genes. We applied our method to an external data set of rat liver gene expression response to a novel drug and achieved an AUROC of 0.7. We also validated our approach by predicting up-regulation of Cytochrome P450 1A2 (CYP1A2) in three drugs known to induce CYP1A2 that were not in our data set. Finally, a detailed analysis of the CYP1A2 predictor allowed us to identify which fragments made significant contributions to the predictive scores.
Published on October 16, 2013
READ PUBLICATION →

Interaction network among functional drug groups.

Authors: Lee M, Park K, Kim D

Abstract: BACKGROUND: More attention has been being paid to combinatorial effects of drugs to treat complex diseases or to avoid adverse combinations of drug cocktail. Although drug interaction information has been increasingly accumulated, a novel approach like network-based method is needed to analyse that information systematically and intuitively RESULTS: Beyond focussing on drug-drug interactions, we examined interactions between functional drug groups. In this work, functional drug groups were defined based on the Anatomical Therapeutic Chemical (ATC) Classification System. We defined criteria whether two functional drug groups are related. Then we constructed the interaction network of drug groups. The resulting network provides intuitive interpretations. We further constructed another network based on interaction sharing ratio of the first network. Subsequent analysis of the networks showed that some features of drugs can be well described by this kind of interaction even for the case of structurally dissimilar drugs. CONCLUSION: Our networks in this work provide intuitive insights into interactions among drug groups rather than those among single drugs. In addition, information on these interactions can be used as a useful source to describe mechanisms and features of drugs.
Published on October 10, 2013
READ PUBLICATION →

Antibacterial mechanisms identified through structural systems pharmacology.

Authors: Chang RL, Xie L, Bourne PE, Palsson BO

Abstract: BACKGROUND: The growing discipline of structural systems pharmacology is applied prospectively in this study to predict pharmacological outcomes of antibacterial compounds in Escherichia coli K12. This work builds upon previously established methods for structural prediction of ligand binding pockets on protein molecules and utilizes and expands upon the previously developed genome scale model of metabolism integrated with protein structures (GEM-PRO) for E. coli, structurally accounting for protein complexes. Carefully selected case studies are demonstrated to display the potential for this structural systems pharmacology framework in discovery and development of antibacterial compounds. RESULTS: The prediction framework for antibacterial activity of compounds was validated for a control set of well-studied compounds, recapitulating experimentally-determined protein binding interactions and deleterious growth phenotypes resulting from these interactions. The antibacterial activity of fosfomycin, sulfathiazole, and trimethoprim were accurately predicted, and as a negative control glucose was found to have no predicted antibacterial activity. Previously uncharacterized mechanisms of action were predicted for compounds with known antibacterial properties, including (1-hydroxyheptane-1,1-diyl)bis(phosphonic acid) and cholesteryl oleate. Five candidate inhibitors were predicted for a desirable target protein without any known inhibitors, tryptophan synthase beta subunit (TrpB). In addition to the predictions presented, this effort also included significant expansion of the previously developed GEM-PRO to account for physiological assemblies of protein complex structures with activities included in the E. coli K12 metabolic network. CONCLUSIONS: The structural systems pharmacology framework presented in this study was shown to be effective in the prediction of molecular mechanisms of antibacterial compounds. The study provides a promising proof of principle for such an approach to antibacterial development and raises specific molecular and systemic hypotheses about antibacterials that are amenable to experimental testing. This framework, and perhaps also the specific predictions of antibacterials, is extensible to developing antibacterial treatments for pathogenic E. coli and other bacterial pathogens.