Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on October 2, 2013
READ PUBLICATION →

Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs).

Authors: Molineris I, Ala U, Provero P, Di Cunto F

Abstract: BACKGROUND: The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of 'ad hoc' gene expression data-sets. RESULTS: By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. CONCLUSIONS: Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation.
Published on October 1, 2013
READ PUBLICATION →

Expanding the olfactory code by in silico decoding of odor-receptor chemical space.

Authors: Boyle SM, McInally S, Ray A

Abstract: Coding of information in the peripheral olfactory system depends on two fundamental : interaction of individual odors with subsets of the odorant receptor repertoire and mode of signaling that an individual receptor-odor interaction elicits, activation or inhibition. We develop a cheminformatics pipeline that predicts receptor-odorant interactions from a large collection of chemical structures (>240,000) for receptors that have been tested to a smaller panel of odorants ( approximately 100). Using a computational approach, we first identify shared structural features from known ligands of individual receptors. We then use these features to screen in silico new candidate ligands from >240,000 potential volatiles for several Odorant receptors (Ors) in the Drosophila antenna. Functional experiments from 9 Ors support a high success rate ( approximately 71%) for the screen, resulting in identification of numerous new activators and inhibitors. Such computational prediction of receptor-odor interactions has the potential to enable systems level analysis of olfactory receptor repertoires in organisms. DOI:http://dx.doi.org/10.7554/eLife.01120.001.
Published in September 2013
READ PUBLICATION →

The use of thrombolytic therapy in pregnancy.

Authors: Gartman EJ

Abstract: The relative hypercoagulable state of pregnancy leads to an increased risk of thrombotic complications, of which some may be life-threatening or medically devastating. In the non-pregnant patient, the current guidelines suggest thrombolysis as the primary treatment in acute ischemic stroke, myocardial infarction when percutaneous intervention is unavailable, certain cases of mechanical valve thrombosis, and pulmonary embolism with hemodynamic compromise or shock. Given that clinical trial data regarding thrombolytic use in pregnant women are absent due to exclusion, the goal of this review is to summarize the available published data regarding the use of thrombolytic agents and subsequent outcomes and complications in pregnant women. Overall, the use of thrombolytic agents in pregnancy is associated with a relatively low reported complication rate, especially given the severe medical conditions for which they are indicated. The data would suggest that thrombolysis should be considered for appropriate indications similar to that of non-pregnant patients. However, caution should be exercised when drawing conclusions regarding maternal and fetal safety, given the lack of controlled clinical trials including pregnant women and the nature of the weak evidence level of the cumulative data presented in this review.
Published in September 2013
READ PUBLICATION →

Bioinformatics for spermatogenesis: annotation of male reproduction based on proteomics.

Authors: Zhou T, Zhou ZM, Guo XJ

Abstract: Proteomics strategies have been widely used in the field of male reproduction, both in basic and clinical research. Bioinformatics methods are indispensable in proteomics-based studies and are used for data presentation, database construction and functional annotation. In the present review, we focus on the functional annotation of gene lists obtained through qualitative or quantitative methods, summarizing the common and male reproduction specialized proteomics databases. We introduce several integrated tools used to find the hidden biological significance from the data obtained. We further describe in detail the information on male reproduction derived from Gene Ontology analyses, pathway analyses and biomedical analyses. We provide an overview of bioinformatics annotations in spermatogenesis, from gene function to biological function and from biological function to clinical application. On the basis of recently published proteomics studies and associated data, we show that bioinformatics methods help us to discover drug targets for sperm motility and to scan for cancer-testis genes. In addition, we summarize the online resources relevant to male reproduction research for the exploration of the regulation of spermatogenesis.
Published in September 2013
READ PUBLICATION →

A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design.

Authors: Kooistra AJ, Kuhne S, de Esch IJ, Leurs R, de Graaf C

Abstract: BACKGROUND AND PURPOSE: Chemogenomics focuses on the discovery of new connections between chemical and biological space leading to the discovery of new protein targets and biologically active molecules. G-protein coupled receptors (GPCRs) are a particularly interesting protein family for chemogenomics studies because there is an overwhelming amount of ligand binding affinity data available. The increasing number of aminergic GPCR crystal structures now for the first time allows the integration of chemogenomics studies with high-resolution structural analyses of GPCR-ligand complexes. EXPERIMENTAL APPROACH: In this study, we have combined ligand affinity data, receptor mutagenesis studies, and amino acid sequence analyses to high-resolution structural analyses of (hist)aminergic GPCR-ligand interactions. This integrated structural chemogenomics analysis is used to more accurately describe the molecular and structural determinants of ligand affinity and selectivity in different key binding regions of the crystallized aminergic GPCRs, and histamine receptors in particular. KEY RESULTS: Our investigations highlight interesting correlations and differences between ligand similarity and ligand binding site similarity of different aminergic receptors. Apparent discrepancies can be explained by combining detailed analysis of crystallized or predicted protein-ligand binding modes, receptor mutation studies, and ligand structure-selectivity relationships that identify local differences in essential pharmacophore features in the ligand binding sites of different receptors. CONCLUSIONS AND IMPLICATIONS: We have performed structural chemogenomics studies that identify links between (hist)aminergic receptor ligands and their binding sites and binding modes. This knowledge can be used to identify structure-selectivity relationships that increase our understanding of ligand binding to (hist)aminergic receptors and hence can be used in future GPCR ligand discovery and design.
Published in September - October 2013
READ PUBLICATION →

Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives.

Authors: Kovacevic A, Dehghan A, Filannino M, Keane JA, Nenadic G

Abstract: OBJECTIVE: Identification of clinical events (eg, problems, tests, treatments) and associated temporal expressions (eg, dates and times) are key tasks in extracting and managing data from electronic health records. As part of the i2b2 2012 Natural Language Processing for Clinical Data challenge, we developed and evaluated a system to automatically extract temporal expressions and events from clinical narratives. The extracted temporal expressions were additionally normalized by assigning type, value, and modifier. MATERIALS AND METHODS: The system combines rule-based and machine learning approaches that rely on morphological, lexical, syntactic, semantic, and domain-specific features. Rule-based components were designed to handle the recognition and normalization of temporal expressions, while conditional random fields models were trained for event and temporal recognition. RESULTS: The system achieved micro F scores of 90% for the extraction of temporal expressions and 87% for clinical event extraction. The normalization component for temporal expressions achieved accuracies of 84.73% (expression's type), 70.44% (value), and 82.75% (modifier). DISCUSSION: Compared to the initial agreement between human annotators (87-89%), the system provided comparable performance for both event and temporal expression mining. While (lenient) identification of such mentions is achievable, finding the exact boundaries proved challenging. CONCLUSIONS: The system provides a state-of-the-art method that can be used to support automated identification of mentions of clinical events and temporal expressions in narratives either to support the manual review process or as a part of a large-scale processing of electronic health databases.
Published on September 23, 2013
READ PUBLICATION →

In silico enzymatic synthesis of a 400,000 compound biochemical database for nontargeted metabolomics.

Authors: Menikarachchi LC, Hill DW, Hamdalla MA, Mandoiu II, Grant DF

Abstract: Current methods of structure identification in mass-spectrometry-based nontargeted metabolomics rely on matching experimentally determined features of an unknown compound to those of candidate compounds contained in biochemical databases. A major limitation of this approach is the relatively small number of compounds currently included in these databases. If the correct structure is not present in a database, it cannot be identified, and if it cannot be identified, it cannot be included in a database. Thus, there is an urgent need to augment metabolomics databases with rationally designed biochemical structures using alternative means. Here we present the In Vivo/In Silico Metabolites Database (IIMDB), a database of in silico enzymatically synthesized metabolites, to partially address this problem. The database, which is available at http://metabolomics.pharm.uconn.edu/iimdb/, includes ~23,000 known compounds (mammalian metabolites, drugs, secondary plant metabolites, and glycerophospholipids) collected from existing biochemical databases plus more than 400,000 computationally generated human phase-I and phase-II metabolites of these known compounds. IIMDB features a user-friendly web interface and a programmer-friendly RESTful web service. Ninety-five percent of the computationally generated metabolites in IIMDB were not found in any existing database. However, 21,640 were identical to compounds already listed in PubChem, HMDB, KEGG, or HumanCyc. Furthermore, the vast majority of these in silico metabolites were scored as biological using BioSM, a software program that identifies biochemical structures in chemical structure space. These results suggest that in silico biochemical synthesis represents a viable approach for significantly augmenting biochemical databases for nontargeted metabolomics applications.
Published on September 17, 2013
READ PUBLICATION →

Molecular-guided therapy predictions reveal drug resistance phenotypes and treatment alternatives in malignant peripheral nerve sheath tumors.

Authors: Peacock JD, Cherba D, Kampfschulte K, Smith MK, Monks NR, Webb CP, Steensma M

Abstract: BACKGROUND: Malignant peripheral nerve sheath tumors (MPNST) are rare highly aggressive sarcomas that affect 8-13% of people with neurofibromatosis type 1. The prognosis for patients with MPNST is very poor. Despite TOP2A overexpression in these tumors, doxorubicin resistance is common, and the mechanisms of chemotherapy resistance in MPNST are poorly understood. Molecular-guided therapy prediction is an emerging strategy for treatment refractory sarcomas that involves identification of therapy response and resistance mechanisms in individual tumors. Here, we report the results from a personalized, molecular-guided therapy analysis of MPNST samples. METHODS: Established molecular-guided therapy prediction software algorithms were used to analyze published microarray data from human MPNST samples and cell lines, with benign neurofibroma tissue controls. MPNST and benign neurofibroma-derived cell lines were used for confirmatory in vitro experimentation using quantitative real-time PCR and growth inhibition assays. Microarray data was analyzed using Affymetrix expression console MAS 5.0 method. Significance was calculated with Welch's t-test with non-corrected p-value < 0.05 and validated using permutation testing across samples. Paired Student's t-tests were used to compare relative EC50 values from independent growth inhibition experiments. RESULTS: Molecular guided therapy predictions highlight substantial variability amongst human MPNST samples in expression of drug target and drug resistance pathways, as well as some similarities amongst samples, including common up-regulation of DNA repair mechanisms. In a subset of MPNSTs, high expression of ABCC1 is observed, serving as a predicted contra-indication for doxorubicin and related therapeutics in these patients. These microarray-based results are confirmed with quantitative, real-time PCR and immunofluorescence. The functional effect of drug efflux in MPNST-derived cells is confirmed using in vitro growth inhibition assays. Alternative therapeutics supported by the molecular-guided therapy predictions are reported and tested in MPNST-derived cells. CONCLUSIONS: These results confirm the substantial molecular heterogeneity of MPNSTs and validate molecular-guided therapy predictions in vitro. The observed molecular heterogeneity in MPNSTs influences therapy prediction. Also, mechanisms involving drug transport and DNA damage repair are primary mediators of MPNST chemotherapy resistance. Together, these findings support the utility of individualized therapy in MPNST as in other sarcomas, and provide initial proof-of concept that individualized therapy prediction can be accomplished.
Published on September 15, 2013
READ PUBLICATION →

Network analysis identifies an HSP90-central hub susceptible in ovarian cancer.

Authors: Liu H, Xiao F, Serebriiskii IG, O'Brien SW, Maglaty MA, Astsaturov I, Litwin S, Martin LP, Proia DA, Golemis EA, Connolly DC

Abstract: PURPOSE: Epithelial ovarian cancer (EOC) is usually detected at an advanced stage and is frequently lethal. Although many patients respond to initial surgery and standard chemotherapy consisting of a platinum-based agent and a taxane, most experience recurrence and eventually treatment-resistant disease. Although there have been numerous efforts to apply protein-targeted agents in EOC, these studies have so far documented little efficacy. Our goal was to identify broadly susceptible signaling proteins or pathways in EOC. EXPERIMENTAL DESIGN: As a new approach, we conducted data-mining meta-analyses integrating results from multiple siRNA screens to identify gene targets that showed significant inhibition of cell growth. On the basis of this meta-analysis, we established that many genes with such activity were clients of the protein chaperone HSP90. We therefore assessed ganetespib, a clinically promising second-generation small-molecule HSP90 inhibitor, for activity against EOC, both as a single agent and in combination with cytotoxic and targeted therapeutic agents. RESULTS: Ganetespib significantly reduced cell growth, induced cell-cycle arrest and apoptosis in vitro, inhibited growth of orthotopic xenografts and spontaneous ovarian tumors in transgenic mice in vivo, and inhibited expression and activation of numerous proteins linked to EOC progression. Importantly, paclitaxel significantly potentiated ganetespib activity in cultured cells and tumors. Moreover, combined treatment of cells with ganetespib and siRNAs or small molecules inhibiting genes identified in the meta-analysis in several cases resulted in enhanced activity. CONCLUSION: These results strongly support investigation of ganetespib, a single-targeted agent with effects on numerous proteins and pathways, in augmenting standard EOC therapies.
Published in August 2013
READ PUBLICATION →

Systematic mining of analog series with related core structures in multi-target activity space.

Authors: Gupta-Ostermann D, Hu Y, Bajorath J

Abstract: We have aimed to systematically extract analog series with related core structures from multi-target activity space to explore target promiscuity of closely related analogous. Therefore, a previously introduced SAR matrix structure was adapted and further extended for large-scale data mining. These matrices organize analog series with related yet distinct core structures in a consistent manner. High-confidence compound activity data yielded more than 2,300 non-redundant matrices capturing 5,821 analog series that included 4,288 series with multi-target and 735 series with multi-family activities. Many matrices captured more than three analog series with activity against more than five targets. The matrices revealed a variety of promiscuity patterns. Compound series matrices also contain virtual compounds, which provide suggestions for compound design focusing on desired activity profiles.