Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on April 10, 2013
READ PUBLICATION →

Bioanalysis of eukaryotic organelles.

Authors: Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MD, Arriaga EA

Abstract: 
Published on April 8, 2013
READ PUBLICATION →

The Three Catecholics Benserazide, Catechol and Pyrogallol are GPR35 Agonists.

Authors: Deng H, Fang Y

Abstract: Nearly 1% of all clinically used drugs are catecholics, a family of catechol-containing compounds. Using label-free dynamic mass redistribution and Tango beta-arrestin translocation assays, we show that several catecholics, including benserazide, catechol, 3-methoxycatechol, pyrogallol, (+)-taxifolin and fenoldopam, display agonistic activity against GPR35.
Published on April 5, 2013
READ PUBLICATION →

The SADI Personal Health Lens: A Web Browser-Based System for Identifying Personally Relevant Drug Interactions.

Authors: Vandervalk B, McCarthy EL, Cruz-Toledo J, Klein A, Baker CJ, Dumontier M, Wilkinson MD

Abstract: BACKGROUND: The Web provides widespread access to vast quantities of health-related information that can improve quality-of-life through better understanding of personal symptoms, medical conditions, and available treatments. Unfortunately, identifying a credible and personally relevant subset of information can be a time-consuming and challenging task for users without a medical background. OBJECTIVE: The objective of the Personal Health Lens system is to aid users when reading health-related webpages by providing warnings about personally relevant drug interactions. More broadly, we wish to present a prototype for a novel, generalizable approach to facilitating interactions between a patient, their practitioner(s), and the Web. METHODS: We utilized a distributed, Semantic Web-based architecture for recognizing personally dangerous drugs consisting of: (1) a private, local triple store of personal health information, (2) Semantic Web services, following the Semantic Automated Discovery and Integration (SADI) design pattern, for text mining and identifying substance interactions, (3) a bookmarklet to trigger analysis of a webpage and annotate it with personalized warnings, and (4) a semantic query that acts as an abstract template of the analytical workflow to be enacted by the system. RESULTS: A prototype implementation of the system is provided in the form of a Java standalone executable JAR file. The JAR file bundles all components of the system: the personal health database, locally-running versions of the SADI services, and a javascript bookmarklet that triggers analysis of a webpage. In addition, the demonstration includes a hypothetical personal health profile, allowing the system to be used immediately without configuration. Usage instructions are provided. CONCLUSIONS: The main strength of the Personal Health Lens system is its ability to organize medical information and to present it to the user in a personalized and contextually relevant manner. While this prototype was limited to a single knowledge domain (drug/drug interactions), the proposed architecture is generalizable, and could act as the foundation for much richer personalized-health-Web clients, while importantly providing a novel and personalizable mechanism for clinical experts to inject their expertise into the browsing experience of their patients in the form of customized semantic queries and ontologies.
Published on April 5, 2013
READ PUBLICATION →

Extrapolating the effect of deleterious nsSNPs in the binding adaptability of flavopiridol with CDK7 protein: a molecular dynamics approach.

Authors: George Priya Doss C, Nagasundaram N, Chakraborty C, Chen L, Zhu H

Abstract: BACKGROUND: Recent reports suggest the role of nonsynonymous single nucleotide polymorphisms (nsSNPs) in cyclin-dependent kinase 7 (CDK7) gene associated with defect in the DNA repair mechanism that may contribute to cancer risk. Among the various inhibitors developed so far, flavopiridol proved to be a potential antitumor drug in the phase-III clinical trial for chronic lymphocytic leukemia. Here, we described a theoretical assessment for the discovery of new drugs or drug targets in CDK7 protein owing to the changes caused by deleterious nsSNPs. METHODS: Three nsSNPs (I63R, H135R, and T285M) were predicted to have functional impact on protein function by SIFT, PolyPhen2, I-Mutant3, PANTHER, SNPs&GO, PhD-SNP, and screening for non-acceptable polymorphisms (SNAP). Furthermore, we analyzed the native and proposed mutant models in atomic level 10 ns simulation using the molecular dynamics (MD) approach. Finally, with the aid of Autodock 4.0 and PatchDock, we analyzed the binding efficacy of flavopiridol with CDK7 protein with respect to the deleterious mutations. RESULTS: By comparing the results of all seven prediction tools, three nsSNPs (I63R, H135R, and T285M) were predicted to have functional impact on the protein function. The results of protein stability analysis inferred that I63R and H135R exhibited less deviation in root mean square deviation in comparison with the native and T285M protein. The flexibility of all the three mutant models of CDK7 protein is diverse in comparison with the native protein. Following to that, docking study revealed the change in the active site residues and decrease in the binding affinity of flavopiridol with mutant proteins. CONCLUSION: This theoretical approach is entirely based on computational methods, which has the ability to identify the disease-related SNPs in complex disorders by contrasting their costs and capabilities with those of the experimental methods. The identification of disease related SNPs by computational methods has the potential to create personalized tools for the diagnosis, prognosis, and treatment of diseases. LAY ABSTRACT: Cell cycle regulatory protein, CDK7, is linked with DNA repair mechanism which can contribute to cancer risk. The main aim of this study is to extrapolate the relationship between the nsSNPs and their effects in drug-binding capability. In this work, we propose a new methodology which (1) efficiently identified the deleterious nsSNPs that tend to have functional effect on protein function upon mutation by computational tools, (2) analyze d the native protein and proposed mutant models in atomic level using MD approach, and (3) investigated the protein-ligand interactions to analyze the binding ability by docking analysis. This theoretical approach is entirely based on computational methods, which has the ability to identify the disease-related SNPs in complex disorders by contrasting their costs and capabilities with those of the experimental methods. Overall, this approach has the potential to create personalized tools for the diagnosis, prognosis, and treatment of diseases.
Published on April 2, 2013
READ PUBLICATION →

Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

Authors: Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N

Abstract: The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
Published in March 2013
READ PUBLICATION →

An overview of computational life science databases & exchange formats of relevance to chemical biology research.

Authors: Smalter Hall A, Shan Y, Lushington G, Visvanathan M

Abstract: Databases and exchange formats describing biological entities such as chemicals and proteins, along with their relationships, are a critical component of research in life sciences disciplines, including chemical biology wherein small information about small molecule properties converges with cellular and molecular biology. Databases for storing biological entities are growing not only in size, but also in type, with many similarities between them and often subtle differences. The data formats available to describe and exchange these entities are numerous as well. In general, each format is optimized for a particular purpose or database, and hence some understanding of these formats is required when choosing one for research purposes. This paper reviews a selection of different databases and data formats with the goal of summarizing their purposes, features, and limitations. Databases are reviewed under the categories of 1) protein interactions, 2) metabolic pathways, 3) chemical interactions, and 4) drug discovery. Representation formats will be discussed according to those describing chemical structures, and those describing genomic/proteomic entities.
Published in March 2013
READ PUBLICATION →

Multiscale distribution and bioaccumulation analysis of clofazimine reveals a massive immune system-mediated xenobiotic sequestration response.

Authors: Baik J, Stringer KA, Mane G, Rosania GR

Abstract: Chronic exposure to some well-absorbed but slowly eliminated xenobiotics can lead to their bioaccumulation in living organisms. Here, we studied the bioaccumulation and distribution of clofazimine, a riminophenazine antibiotic used to treat mycobacterial infection. Using mice as a model organism, we performed a multiscale, quantitative analysis to reveal the sites of clofazimine bioaccumulation during chronic, long-term exposure. Remarkably, between 3 and 8 weeks of dietary administration, clofazimine massively redistributed from adipose tissue to liver and spleen. During this time, clofazimine concentration in fat and serum significantly decreased, while the mass of clofazimine in spleen and liver increased by >10-fold. These changes were paralleled by the accumulation of clofazimine in the resident macrophages of the lymphatic organs, with as much as 90% of the clofazimine mass in spleen sequestered in intracellular crystal-like drug inclusions (CLDIs). The amount of clofazimine associated with CLDIs of liver and spleen macrophages disproportionately increased and ultimately accounted for a major fraction of the total clofazimine in the host. After treatment was discontinued, clofazimine was retained in spleen while its concentrations decreased in blood and other organs. Immunologically, clofazimine bioaccumulation induced a local, monocyte-specific upregulation of various chemokines and receptors. However, interleukin-1 receptor antagonist was also upregulated, and the acute-phase response pathways and oxidant capacity decreased or remained unchanged, marking a concomitant activation of an anti-inflammatory response. These experiments indicate an inducible, immune system-dependent, xenobiotic sequestration response affecting the atypical pharmacokinetics of a small molecule chemotherapeutic agent.
Published in March 2013
READ PUBLICATION →

Informatics confronts drug-drug interactions.

Authors: Percha B, Altman RB

Abstract: Drug-drug interactions (DDIs) are an emerging threat to public health. Recent estimates indicate that DDIs cause nearly 74000 emergency room visits and 195000 hospitalizations each year in the USA. Current approaches to DDI discovery, which include Phase IV clinical trials and post-marketing surveillance, are insufficient for detecting many DDIs and do not alert the public to potentially dangerous DDIs before a drug enters the market. Recent work has applied state-of-the-art computational and statistical methods to the problem of DDIs. Here we review recent developments that encompass a range of informatics approaches in this domain, from the construction of databases for efficient searching of known DDIs to the prediction of novel DDIs based on data from electronic medical records, adverse event reports, scientific abstracts, and other sources. We also explore why DDIs are so difficult to detect and what the future holds for informatics-based approaches to DDI discovery.
Published in February 2013
READ PUBLICATION →

Target deconvolution techniques in modern phenotypic profiling.

Authors: Lee J, Bogyo M

Abstract: The past decade has seen rapid growth in the use of diverse compound libraries in classical phenotypic screens to identify modulators of a given process. The subsequent process of identifying the molecular targets of active hits, also called 'target deconvolution', is an essential step for understanding compound mechanism of action and for using the identified hits as tools for further dissection of a given biological process. Recent advances in 'omics' technologies, coupled with in silico approaches and the reduced cost of whole genome sequencing, have greatly improved the workflow of target deconvolution and have contributed to a renaissance of 'modern' phenotypic profiling. In this review, we will outline how both new and old techniques are being used in the difficult process of target identification and validation as well as discuss some of the ongoing challenges remaining for phenotypic screening.
Published on February 14, 2013
READ PUBLICATION →

Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling.

Authors: Wittwer MB, Zur AA, Khuri N, Kido Y, Kosaka A, Zhang X, Morrissey KM, Sali A, Huang Y, Giacomini KM

Abstract: The human multidrug and toxin extrusion (MATE) transporter 1 contributes to the tissue distribution and excretion of many drugs. Inhibition of MATE1 may result in potential drug-drug interactions (DDIs) and alterations in drug exposure and accumulation in various tissues. The primary goals of this project were to identify MATE1 inhibitors with clinical importance or in vitro utility and to elucidate the physicochemical properties that differ between MATE1 and OCT2 inhibitors. Using a fluorescence assay of ASP(+) uptake in cells stably expressing MATE1, over 900 prescription drugs were screened and 84 potential MATE1 inhibitors were found. We identified several MATE1 selective inhibitors including four FDA-approved medications that may be clinically relevant MATE1 inhibitors and could cause a clinical DDI. In parallel, a QSAR model identified distinct molecular properties of MATE1 versus OCT2 inhibitors and was used to screen the DrugBank in silico library for new hits in a larger chemical space.