Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on January 23, 2020
READ PUBLICATION →

Hepatotoxicity Modeling Using Counter-Propagation Artificial Neural Networks: Handling an Imbalanced Classification Problem.

Authors: Bajzelj B, Drgan V

Abstract: Drug-induced liver injury is a major concern in the drug development process. Expensive and time-consuming in vitro and in vivo studies do not reflect the complexity of the phenomenon. Complementary to wet lab methods are in silico approaches, which present a cost-efficient method for toxicity prediction. The aim of our study was to explore the capabilities of counter-propagation artificial neural networks (CPANNs) for the classification of an imbalanced dataset related to idiosyncratic drug-induced liver injury and to develop a model for prediction of the hepatotoxic potential of drugs. Genetic algorithm optimization of CPANN models was used to build models for the classification of drugs into hepatotoxic and non-hepatotoxic class using molecular descriptors. For the classification of an imbalanced dataset, we modified the classical CPANN training algorithm by integrating random subsampling into the training procedure of CPANN to improve the classification ability of CPANN. According to the number of models accepted by internal validation and according to the prediction statistics on the external set, we concluded that using an imbalanced set with balanced subsampling in each learning epoch is a better approach compared to using a fixed balanced set in the case of the counter-propagation artificial neural network learning methodology.
Published on January 22, 2020
READ PUBLICATION →

A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules.

Authors: Patel-Murray NL, Adam M, Huynh N, Wassie BT, Milani P, Fraenkel E

Abstract: High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed an approach for uncovering MoAs through an interpretable machine learning model of transcriptomics, epigenomics, metabolomics, and proteomics. Examining compounds with beneficial effects in models of Huntington's Disease, we found common MoAs for compounds with unrelated structures, connectivity scores, and binding targets. The approach also predicted highly divergent MoAs for two FDA-approved antihistamines. We experimentally validated these effects, demonstrating that one antihistamine activates autophagy, while the other targets bioenergetics. The use of multiple omics was essential, as some MoAs were virtually undetectable in specific assays. Our approach does not require reference compounds or large databases of experimental data in related systems and thus can be applied to the study of agents with uncharacterized MoAs and to rare or understudied diseases.
Published on January 10, 2020
READ PUBLICATION →

Construction of asthma related competing endogenous RNA network revealed novel long non-coding RNAs and potential new drugs.

Authors: Liao Y, Li P, Wang Y, Chen H, Ning S, Su D

Abstract: BACKGROUND: Asthma is a heterogeneous disease characterized by chronic airway inflammation. Long non-coding RNA can act as competing endogenous RNA to mRNA, and play significant role in many diseases. However, there is little known about the profiles of long non-coding RNA and the long non-coding RNA related competing endogenous RNA network in asthma. In current study, we aimed to explore the long non-coding RNA-microRNA-mRNA competing endogenous RNA network in asthma and their potential implications for therapy and prognosis. METHODS: Asthma-related gene expression profiles were downloaded from the Gene Expression Omnibus database, re-annotated with these genes and identified for asthma-associated differentially expressed mRNAs and long non-coding RNAs. The long non-coding RNA-miRNA interaction data and mRNA-miRNA interaction data were downloaded using the starBase database to construct a long non-coding RNA-miRNA-mRNA global competing endogenous RNA network and extract asthma-related differentially expressed competing endogenous RNA network. Finally, functional enrichment analysis and drug repositioning of asthma-associated differentially expressed competing endogenous RNA networks were performed to further identify key long non-coding RNAs and potential therapeutics associated with asthma. RESULTS: This study constructed an asthma-associated competing endogenous RNA network, determined 5 key long non-coding RNAs (MALAT1, MIR17HG, CASC2, MAGI2-AS3, DAPK1-IT1) and identified 8 potential new drugs (Tamoxifen, Ruxolitinib, Tretinoin, Quercetin, Dasatinib, Levocarnitine, Niflumic Acid, Glyburide). CONCLUSIONS: The results suggested that long non-coding RNA played an important role in asthma, and these novel long non-coding RNAs could be potential therapeutic target and prognostic biomarkers. At the same time, potential new drugs for asthma treatment have been discovered through drug repositioning techniques, providing a new direction for the treatment of asthma.
Published on January 10, 2020
READ PUBLICATION →

In silico analysis of alternative splicing on drug-target gene interactions.

Authors: Ji Y, Mishra RK, Davuluri RV

Abstract: Identifying and evaluating the right target are the most important factors in early drug discovery phase. Most studies focus on one protein ignoring the multiple splice-variant or protein-isoforms, which might contribute to unexpected therapeutic activity or adverse side effects. Here, we present computational analysis of cancer drug-target interactions affected by alternative splicing. By integrating information from publicly available databases, we curated 883 FDA approved or investigational stage small molecule cancer drugs that target 1,434 different genes, with an average of 5.22 protein isoforms per gene. Of these, 618 genes have >/=5 annotated protein-isoforms. By analyzing the interactions with binding pocket information, we found that 76% of drugs either miss a potential target isoform or target other isoforms with varied expression in multiple normal tissues. We present sequence and structure level alignments at isoform-level and make this information publicly available for all the curated drugs. Structure-level analysis showed ligand binding pocket architectures differences in size, shape and electrostatic parameters between isoforms. Our results emphasize how potentially important isoform-level interactions could be missed by solely focusing on the canonical isoform, and suggest that on- and off-target effects at isoform-level should be investigated to enhance the productivity of drug-discovery research.
Published on January 9, 2020
READ PUBLICATION →

Uncovering the Pharmacological Mechanism of Stemazole in the Treatment of Neurodegenerative Diseases Based on a Network Pharmacology Approach.

Authors: Zhang J, Li H, Zhang Y, Zhao C, Zhu Y, Han M

Abstract: Stemazole exerts potent pharmacological effects against neurodegenerative diseases and protective effects in stem cells. However, on the basis of the current understanding, the molecular mechanisms underlying the effects of stemazole in the treatment of Alzheimer's disease and Parkinson's disease have not been fully elucidated. In this study, a network pharmacology-based strategy integrating target prediction, network construction, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking was adopted to predict the targets of stemazole relevant to the treatment of neurodegenerative diseases and to further explore the involved pharmacological mechanisms. The majority of the predicted targets were highly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. RAC-alpha serine/threonine-protein kinase (AKT1), caspase-3 (CASP3), caspase-8 (CASP8), mitogen-activated protein kinase 8 (MAPK8), and mitogen-activated protein kinase 14 (MAPK14) are the core targets regulated by stemazole and play a central role in its anti-apoptosis effects. This work provides a scientific basis for further elucidating the mechanism underlying the effects of stemazole in the treatment of neurodegenerative diseases.
Published on January 8, 2020
READ PUBLICATION →

Pathway Commons 2019 Update: integration, analysis and exploration of pathway data.

Authors: Rodchenkov I, Babur O, Luna A, Aksoy BA, Wong JV, Fong D, Franz M, Siper MC, Cheung M, Wrana M, Mistry H, Mosier L, Dlin J, Wen Q, O'Callaghan C, Li W, Elder G, Smith PT, Dallago C, Cerami E, Gross B, Dogrusoz U, Demir E, Bader GD, Sander C

Abstract: Pathway Commons (https://www.pathwaycommons.org) is an integrated resource of publicly available information about biological pathways including biochemical reactions, assembly of biomolecular complexes, transport and catalysis events and physical interactions involving proteins, DNA, RNA, and small molecules (e.g. metabolites and drug compounds). Data is collected from multiple providers in standard formats, including the Biological Pathway Exchange (BioPAX) language and the Proteomics Standards Initiative Molecular Interactions format, and then integrated. Pathway Commons provides biologists with (i) tools to search this comprehensive resource, (ii) a download site offering integrated bulk sets of pathway data (e.g. tables of interactions and gene sets), (iii) reusable software libraries for working with pathway information in several programming languages (Java, R, Python and Javascript) and (iv) a web service for programmatically querying the entire dataset. Visualization of pathways is supported using the Systems Biological Graphical Notation (SBGN). Pathway Commons currently contains data from 22 databases with 4794 detailed human biochemical processes (i.e. pathways) and approximately 2.3 million interactions. To enhance the usability of this large resource for end-users, we develop and maintain interactive web applications and training materials that enable pathway exploration and advanced analysis.
Published on January 8, 2020
READ PUBLICATION →

CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database.

Authors: Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen AV, Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran HK, Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, Faltyn M, Hernandez-Koutoucheva A, Sharma AN, Bordeleau E, Pawlowski AC, Zubyk HL, Dooley D, Griffiths E, Maguire F, Winsor GL, Beiko RG, Brinkman FSL, Hsiao WWL, Domselaar GV, McArthur AG

Abstract: The Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) is a curated resource providing reference DNA and protein sequences, detection models and bioinformatics tools on the molecular basis of bacterial antimicrobial resistance (AMR). CARD focuses on providing high-quality reference data and molecular sequences within a controlled vocabulary, the Antibiotic Resistance Ontology (ARO), designed by the CARD biocuration team to integrate with software development efforts for resistome analysis and prediction, such as CARD's Resistance Gene Identifier (RGI) software. Since 2017, CARD has expanded through extensive curation of reference sequences, revision of the ontological structure, curation of over 500 new AMR detection models, development of a new classification paradigm and expansion of analytical tools. Most notably, a new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes. By adding these resistance variants to CARD, we are able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants. Here, we describe updates and recent expansions to CARD and its biocuration process, including new resources for community biocuration of AMR molecular reference data.
Published on January 8, 2020
READ PUBLICATION →

ExonSkipDB: functional annotation of exon skipping event in human.

Authors: Kim P, Yang M, Yiya K, Zhao W, Zhou X

Abstract: Exon skipping (ES) is reported to be the most common alternative splicing event due to loss of functional domains/sites or shifting of the open reading frame (ORF), leading to a variety of human diseases and considered therapeutic targets. To date, systematic and intensive annotations of ES events based on the skipped exon units in cancer and normal tissues are not available. Here, we built ExonSkipDB, the ES annotation database available at https://ccsm.uth.edu/ExonSkipDB/, aiming to provide a resource and reference for functional annotation of ES events in multiple cancer and tissues to identify therapeutically targetable genes in individual exon units. We collected 14 272 genes that have 90 616 and 89 845 ES events across 33 cancer types and 31 normal tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). For the ES events, we performed multiple functional annotations. These include ORF assignment of exon skipped transcript, studies of lost protein functional features due to ES events, and studies of exon skipping events associated with mutations and methylations based on multi-omics evidence. ExonSkipDB will be a unique resource for cancer and drug research communities to identify therapeutically targetable exon skipping events.
Published on January 8, 2020
READ PUBLICATION →

SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update.

Authors: Licata L, Lo Surdo P, Iannuccelli M, Palma A, Micarelli E, Perfetto L, Peluso D, Calderone A, Castagnoli L, Cesareni G

Abstract: The SIGnaling Network Open Resource 2.0 (SIGNOR 2.0) is a public repository that stores signaling information as binary causal relationships between biological entities. The captured information is represented graphically as a signed directed graph. Each signaling relationship is associated to an effect (up/down-regulation) and to the mechanism (e.g. binding, phosphorylation, transcriptional activation, etc.) causing the up/down-regulation of the target entity. Since its first release, SIGNOR has undergone a significant content increase and the number of annotated causal interactions have almost doubled. SIGNOR 2.0 now stores almost 23 000 manually-annotated causal relationships between proteins and other biologically relevant entities: chemicals, phenotypes, complexes, etc. We describe here significant changes in curation policy and a new confidence score, which is assigned to each interaction. We have also improved the compliance to the FAIR data principles by providing (i) SIGNOR stable identifiers, (ii) programmatic access through REST APIs, (iii) bioschemas and (iv) downloadable data in standard-compliant formats, such as PSI-MI CausalTAB and GMT. The data are freely accessible and downloadable at https://signor.uniroma2.it/.
Published on January 8, 2020
READ PUBLICATION →

DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy.

Authors: Liu H, Zhang W, Zou B, Wang J, Deng Y, Deng L

Abstract: Drug combinations have demonstrated high efficacy and low adverse side effects compared to single drug administration in cancer therapies and thus have drawn intensive attention from researchers and pharmaceutical enterprises. Due to the rapid development of high-throughput screening (HTS), the number of drug combination datasets available has increased tremendously in recent years. Therefore, there is an urgent need for a comprehensive database that is crucial to both experimental and computational screening of synergistic drug combinations. In this paper, we present DrugCombDB, a comprehensive database devoted to the curation of drug combinations from various data sources: (i) HTS assays of drug combinations; (ii) manual curations from the literature; and (iii) FDA Orange Book and external databases. Specifically, DrugCombDB includes 448 555 drug combinations derived from HTS assays, covering 2887 unique drugs and 124 human cancer cell lines. In particular, DrugCombDB has more than 6000 000 quantitative dose responses from which we computed multiple synergy scores to determine the overall synergistic or antagonistic effects of drug combinations. In addition to the combinations extracted from existing databases, we manually curated 457 drug combinations from thousands of PubMed publications. To benefit the further experimental validation and development of computational models, multiple datasets that are ready to train prediction models for classification and regression analysis were constructed and other significant related data were gathered. A website with a user-friendly graphical visualization has been developed for users to access the wealth of data and download prebuilt datasets. Our database is available at http://drugcombdb.denglab.org/.