Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on April 25, 2018
READ PUBLICATION →

New perspectives: systems medicine in cardiovascular disease.

Authors: Kramer F, Just S, Zeller T

Abstract: BACKGROUND: Cardiovascular diseases (CVD) represent one of the most important causes of morbidity and mortality worldwide. Innovative approaches to increase the understanding of the underpinnings of CVD promise to enhance CVD risk assessment and might pave the way to tailored therapies. Within the last years, systems medicine has emerged as a novel tool to study the genetic, molecular and physiological interactions. CONCLUSION: In this review, we provide an overview of the current molecular-experimental, epidemiological and bioinformatical tools applied in systems medicine in the cardiovascular field. We will discuss the status and challenges in implementing interdisciplinary systems medicine approaches in CVD.
Published on April 24, 2018
READ PUBLICATION →

Multi-target drug repositioning by bipartite block-wise sparse multi-task learning.

Authors: Li L, He X, Borgwardt K

Abstract: BACKGROUND: Finding potential drug targets is a crucial step in drug discovery and development. Recently, resources such as the Library of Integrated Network-Based Cellular Signatures (LINCS) L1000 database provide gene expression profiles induced by various chemical and genetic perturbations and thereby make it possible to analyze the relationship between compounds and gene targets at a genome-wide scale. Current approaches for comparing the expression profiles are based on pairwise connectivity mapping analysis. However, this method makes the simple assumption that the effect of a drug treatment is similar to knocking down its single target gene. Since many compounds can bind multiple targets, the pairwise mapping ignores the combined effects of multiple targets, and therefore fails to detect many potential targets of the compounds. RESULTS: We propose an algorithm to find sets of gene knock-downs that induce gene expression changes similar to a drug treatment. Assuming that the effects of gene knock-downs are additive, we propose a novel bipartite block-wise sparse multi-task learning model with super-graph structure (BBSS-MTL) for multi-target drug repositioning that overcomes the restrictive assumptions of connectivity mapping analysis. CONCLUSIONS: The proposed method BBSS-MTL is more accurate for predicting potential drug targets than the simple pairwise connectivity mapping analysis on five datasets generated from different cancer cell lines. AVAILABILITY: The code can be obtained at http://gr.xjtu.edu.cn/web/liminli/codes .
Published on April 19, 2018
READ PUBLICATION →

Computational Prediction and Analysis of Associations between Small Molecules and Binding-Associated S-Nitrosylation Sites.

Authors: Huang G, Li J, Zhao C

Abstract: Interactions between drugs and proteins occupy a central position during the process of drug discovery and development. Numerous methods have recently been developed for identifying drug(-)target interactions, but few have been devoted to finding interactions between post-translationally modified proteins and drugs. We presented a machine learning-based method for identifying associations between small molecules and binding-associated S-nitrosylated (SNO-) proteins. Namely, small molecules were encoded by molecular fingerprint, SNO-proteins were encoded by the information entropy-based method, and the random forest was used to train a classifier. Ten-fold and leave-one-out cross validations achieved, respectively, 0.7235 and 0.7490 of the area under a receiver operating characteristic curve. Computational analysis of similarity suggested that SNO-proteins associated with the same drug shared statistically significant similarity, and vice versa. This method and finding are useful to identify drug(-)SNO associations and further facilitate the discovery and development of SNO-associated drugs.
Published on April 17, 2018
READ PUBLICATION →

Transcriptome based individualized therapy of refractory pediatric sarcomas: feasibility, tolerability and efficacy.

Authors: Weidenbusch B, Richter GHS, Kesper MS, Guggemoos M, Gall K, Prexler C, Kazantsev I, Sipol A, Lindner L, Nathrath M, Witt O, Specht K, Beitinger F, Knebel C, Hosie S, von Eisenhardt-Rothe R, Weichert W, Luettichau IT, Burdach S

Abstract: Survival rates of pediatric sarcoma patients stagnated during the last two decades, especially in adolescents and young adults (AYAs). Targeted therapies offer new options in refractory cases. Gene expression profiling provides a robust method to characterize the transcriptome of each patient's tumor and guide the choice of therapy. Twenty patients with refractory pediatric sarcomas (age 8-35 years) were assessed with array profiling: ten had Ewing sarcoma, five osteosarcoma, and five soft tissue sarcoma. Overexpressed genes and deregulated pathways were identified as actionable targets and an individualized combination of targeted therapies was recommended. Disease status, survival, adverse events (AEs), and quality of life (QOL) were assessed in patients receiving targeted therapy (TT) and compared to patients without targeted therapy (non TT). Actionable targets were identified in all analyzed biopsies. Targeted therapy was administered in nine patients, while eleven received no targeted therapy. No significant difference in risk factors between these two groups was detected. Overall survival (OS) and progression free survival (PFS) were significantly higher in the TT group (OS: P=0.0014, PFS: P=0.0011). Median OS was 8.83 versus 4.93 months and median PFS was 6.17 versus 1.6 months in TT versus non TT group, respectively. QOL did not differ at baseline as well as at four week intervals between the two groups. TT patients had less grade 1 AEs (P=0.009). The frequency of grade 2-4 AEs did not differ. Overall, expression based targeted therapy is a feasible and likely beneficial approach in patients with refractory pediatric sarcomas that warrants further study.
Published on April 16, 2018
READ PUBLICATION →

SPIDR: small-molecule peptide-influenced drug repurposing.

Authors: King MD, Long T, Pfalmer DL, Andersen TL, McDougal OM

Abstract: BACKGROUND: Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates. RESULTS: Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide alpha-conotoxin MII ligand and the alpha3beta2-nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the alpha3beta2-nAChR isoform using a library consisting of 640,000 alpha-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for alpha3beta2-nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native alpha-conotoxin MII peptide. CONCLUSIONS: SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing.
Published on April 15, 2018
READ PUBLICATION →

PKIDB: A Curated, Annotated and Updated Database of Protein Kinase Inhibitors in Clinical Trials.

Authors: Carles F, Bourg S, Meyer C, Bonnet P

Abstract: The number of protein kinase inhibitors (PKIs) approved worldwide continues to grow steadily, with 39 drugs approved in the period between 2001 and January 2018. PKIs on the market have been the subject of many reviews, and structure-property relationships specific to this class of drugs have been inferred. However, the large number of PKIs under development is often overlooked. In this paper, we present PKIDB (Protein Kinase Inhibitor Database), a monthly-updated database gathering approved PKIs as well as PKIs currently in clinical trials. The database compiles currently 180 inhibitors ranging from phase 0 to 4 clinical trials along with annotations extracted from seven public resources. The distribution and property ranges of standard physicochemical properties are presented. They can be used as filters to better prioritize compound selection for future screening campaigns. Interestingly, more than one-third of the kinase inhibitors violate at least one Lipinski's rule. A Principal Component Analysis (PCA) reveals that Type-II inhibitors are mapped to a distinct chemical space as compared to orally administrated drugs as well as to other types of kinase inhibitors. Using a Principal Moment of Inertia (PMI) analysis, we show that PKIs under development tend to explore new shape territories as compared to approved PKIs. In order to facilitate the analysis of the protein space, the kinome tree has been annotated with all protein kinases being targeted by PKIs. Finally, we analyzed the pipeline of the pharmaceutical companies having PKIs on the market or still under development. We hope that this work will assist researchers in the kinase field in identifying and designing the next generation of kinase inhibitors for still untargeted kinases. The PKIDB database is freely accessible from a website at http://www.icoa.fr/pkidb and can be easily browsed through a user-friendly spreadsheet-like interface.
Published on April 15, 2018
READ PUBLICATION →

Sequential feature selection and inference using multi-variate random forests.

Authors: Mayer J, Rahman R, Ghosh S, Pal R

Abstract: Motivation: Random forest (RF) has become a widely popular prediction generating mechanism. Its strength lies in its flexibility, interpretability and ability to handle large number of features, typically larger than the sample size. However, this methodology is of limited use if one wishes to identify statistically significant features. Several ranking schemes are available that provide information on the relative importance of the features, but there is a paucity of general inferential mechanism, particularly in a multi-variate set up. We use the conditional inference tree framework to generate a RF where features are deleted sequentially based on explicit hypothesis testing. The resulting sequential algorithm offers an inferentially justifiable, but model-free, variable selection procedure. Significant features are then used to generate predictive RF. An added advantage of our methodology is that both variable selection and prediction are based on conditional inference framework and hence are coherent. Results: We illustrate the performance of our Sequential Multi-Response Feature Selection approach through simulation studies and finally apply this methodology on Genomics of Drug Sensitivity for Cancer dataset to identify genetic characteristics that significantly impact drug sensitivities. Significant set of predictors obtained from our method are further validated from biological perspective. Availability and implementation: https://github.com/jomayer/SMuRF. Contact: souparno.ghosh@ttu.edu. Supplementary information: Supplementary data are available at Bioinformatics online.
Published on April 12, 2018
READ PUBLICATION →

Realizing drug repositioning by adapting a recommendation system to handle the process.

Authors: Ozsoy MG, Ozyer T, Polat F, Alhajj R

Abstract: BACKGROUND: Drug repositioning is the process of identifying new targets for known drugs. It can be used to overcome problems associated with traditional drug discovery by adapting existing drugs to treat new discovered diseases. Thus, it may reduce associated risk, cost and time required to identify and verify new drugs. Nowadays, drug repositioning has received more attention from industry and academia. To tackle this problem, researchers have applied many different computational methods and have used various features of drugs and diseases. RESULTS: In this study, we contribute to the ongoing research efforts by combining multiple features, namely chemical structures, protein interactions and side-effects to predict new indications of target drugs. To achieve our target, we realize drug repositioning as a recommendation process and this leads to a new perspective in tackling the problem. The utilized recommendation method is based on Pareto dominance and collaborative filtering. It can also integrate multiple data-sources and multiple features. For the computation part, we applied several settings and we compared their performance. Evaluation results show that the proposed method can achieve more concentrated predictions with high precision, where nearly half of the predictions are true. CONCLUSIONS: Compared to other state of the art methods described in the literature, the proposed method is better at making right predictions by having higher precision. The reported results demonstrate the applicability and effectiveness of recommendation methods for drug repositioning.
Published on April 11, 2018
READ PUBLICATION →

Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization.

Authors: Yu H, Mao KT, Shi JY, Huang H, Chen Z, Dong K, Yiu SM

Abstract: BACKGROUND: Drug-drug interactions (DDIs) always cause unexpected and even adverse drug reactions. It is important to identify DDIs before drugs are used in the market. However, preclinical identification of DDIs requires much money and time. Computational approaches have exhibited their abilities to predict potential DDIs on a large scale by utilizing pre-market drug properties (e.g. chemical structure). Nevertheless, none of them can predict two comprehensive types of DDIs, including enhancive and degressive DDIs, which increases and decreases the behaviors of the interacting drugs respectively. There is a lack of systematic analysis on the structural relationship among known DDIs. Revealing such a relationship is very important, because it is able to help understand how DDIs occur. Both the prediction of comprehensive DDIs and the discovery of structural relationship among them play an important guidance when making a co-prescription. RESULTS: In this work, treating a set of comprehensive DDIs as a signed network, we design a novel model (DDINMF) for the prediction of enhancive and degressive DDIs based on semi-nonnegative matrix factorization. Inspiringly, DDINMF achieves the conventional DDI prediction (AUROC = 0.872 and AUPR = 0.605) and the comprehensive DDI prediction (AUROC = 0.796 and AUPR = 0.579). Compared with two state-of-the-art approaches, DDINMF shows it superiority. Finally, representing DDIs as a binary network and a signed network respectively, an analysis based on NMF reveals crucial knowledge hidden among DDIs. CONCLUSIONS: Our approach is able to predict not only conventional binary DDIs but also comprehensive DDIs. More importantly, it reveals several key points about the DDI network: (1) both binary and signed networks show fairly clear clusters, in which both drug degree and the difference between positive degree and negative degree show significant distribution; (2) the drugs having large degrees tend to have a larger difference between positive degree and negative degree; (3) though the binary DDI network contains no information about enhancive and degressive DDIs at all, it implies some of their relationship in the comprehensive DDI matrix; (4) the occurrence of signs indicating enhancive and degressive DDIs is not random because the comprehensive DDI network is equipped with a structural balance.
Published on April 11, 2018
READ PUBLICATION →

A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration.

Authors: Hameed PN, Verspoor K, Kusljic S, Halgamuge S

Abstract: BACKGROUND: Drug repositioning is the process of identifying new uses for existing drugs. Computational drug repositioning methods can reduce the time, costs and risks of drug development by automating the analysis of the relationships in pharmacology networks. Pharmacology networks are large and heterogeneous. Clustering drugs into small groups can simplify large pharmacology networks, these subgroups can also be used as a starting point for repositioning drugs. In this paper, we propose a two-tiered drug-centric unsupervised clustering approach for drug repositioning, integrating heterogeneous drug data profiles: drug-chemical, drug-disease, drug-gene, drug-protein and drug-side effect relationships. RESULTS: The proposed drug repositioning approach is threefold; (i) clustering drugs based on their homogeneous profiles using the Growing Self Organizing Map (GSOM); (ii) clustering drugs based on drug-drug relation matrices based on the previous step, considering three state-of-the-art graph clustering methods; and (iii) inferring drug repositioning candidates and assigning a confidence value for each identified candidate. In this paper, we compare our two-tiered clustering approach against two existing heterogeneous data integration approaches with reference to the Anatomical Therapeutic Chemical (ATC) classification, using GSOM. Our approach yields Normalized Mutual Information (NMI) and Standardized Mutual Information (SMI) of 0.66 and 36.11, respectively, while the two existing methods yield NMI of 0.60 and 0.64 and SMI of 22.26 and 33.59. Moreover, the two existing approaches failed to produce useful cluster separations when using graph clustering algorithms while our approach is able to identify useful clusters for drug repositioning. Furthermore, we provide clinical evidence for four predicted results (Chlorthalidone, Indomethacin, Metformin and Thioridazine) to support that our proposed approach can be reliably used to infer ATC code and drug repositioning. CONCLUSION: The proposed two-tiered unsupervised clustering approach is suitable for drug clustering and enables heterogeneous data integration. It also enables identifying reliable repositioning drug candidates with reference to ATC therapeutic classification. The repositioning drug candidates identified consistently by multiple clustering algorithms and with high confidence have a higher possibility of being effective repositioning candidates.