Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on January 19, 2018
READ PUBLICATION →

A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.

Authors: Guo WF, Zhang SW, Shi QQ, Zhang CM, Zeng T, Chen L

Abstract: BACKGROUND: The advances in target control of complex networks not only can offer new insights into the general control dynamics of complex systems, but also be useful for the practical application in systems biology, such as discovering new therapeutic targets for disease intervention. In many cases, e.g. drug target identification in biological networks, we usually require a target control on a subset of nodes (i.e., disease-associated genes) with minimum cost, and we further expect that more driver nodes consistent with a certain well-selected network nodes (i.e., prior-known drug-target genes). RESULTS: Therefore, motivated by this fact, we pose and address a new and practical problem called as target control problem with objectives-guided optimization (TCO): how could we control the interested variables (or targets) of a system with the optional driver nodes by minimizing the total quantity of drivers and meantime maximizing the quantity of constrained nodes among those drivers. Here, we design an efficient algorithm (TCOA) to find the optional driver nodes for controlling targets in complex networks. We apply our TCOA to several real-world networks, and the results support that our TCOA can identify more precise driver nodes than the existing control-fucus approaches. Furthermore, we have applied TCOA to two bimolecular expert-curate networks. Source code for our TCOA is freely available from http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm or https://github.com/WilfongGuo/guoweifeng . CONCLUSIONS: In the previous theoretical research for the full control, there exists an observation and conclusion that the driver nodes tend to be low-degree nodes. However, for target control the biological networks, we find interestingly that the driver nodes tend to be high-degree nodes, which is more consistent with the biological experimental observations. Furthermore, our results supply the novel insights into how we can efficiently target control a complex system, and especially many evidences on the practical strategic utility of TCOA to incorporate prior drug information into potential drug-target forecasts. Thus applicably, our method paves a novel and efficient way to identify the drug targets for leading the phenotype transitions of underlying biological networks.
Published on January 18, 2018
READ PUBLICATION →

Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment.

Authors: Nagaraj AB, Wang QQ, Joseph P, Zheng C, Chen Y, Kovalenko O, Singh S, Armstrong A, Resnick K, Zanotti K, Waggoner S, Xu R, DiFeo A

Abstract: Computation-based drug-repurposing/repositioning approaches can greatly speed up the traditional drug discovery process. To date, systematic and comprehensive computation-based approaches to identify and validate drug-repositioning candidates for epithelial ovarian cancer (EOC) have not been undertaken. Here, we present a novel drug discovery strategy that combines a computational drug-repositioning system (DrugPredict) with biological testing in cell lines in order to rapidly identify novel drug candidates for EOC. DrugPredict exploited unique repositioning opportunities rendered by a vast amount of disease genomics, phenomics, drug treatment, and genetic pathway and uniquely revealed that non-steroidal anti-inflammatories (NSAIDs) rank just as high as currently used ovarian cancer drugs. As epidemiological studies have reported decreased incidence of ovarian cancer associated with regular intake of NSAIDs, we assessed whether NSAIDs could have chemoadjuvant applications in EOC and found that (i) NSAID Indomethacin induces robust cell death in primary patient-derived platinum-sensitive and platinum- resistant ovarian cancer cells and ovarian cancer stem cells and (ii) downregulation of beta-catenin is partially driving effects of Indomethacin in cisplatin-resistant cells. In summary, we demonstrate that DrugPredict represents an innovative computational drug- discovery strategy to uncover drugs that are routinely used for other indications that could be effective in treating various cancers, thus introducing a potentially rapid and cost-effective translational opportunity. As NSAIDs are already in routine use in gynecological treatment regimens and have acceptable safety profile, our results will provide with a rationale for testing NSAIDs as potential chemoadjuvants in EOC patient trials.
Published on January 12, 2018
READ PUBLICATION →

Acquired resistance to tyrosine kinase inhibitors may be linked with the decreased sensitivity to X-ray irradiation.

Authors: Sorokin M, Kholodenko R, Grekhova A, Suntsova M, Pustovalova M, Vorobyeva N, Kholodenko I, Malakhova G, Garazha A, Nedoluzhko A, Vasilov R, Poddubskaya E, Kovalchuk O, Adamyan L, Prassolov V, Allina D, Kuzmin D, Ignatev K, Osipov A, Buzdin A

Abstract: Acquired resistance to chemotherapy and radiation therapy is one of the major obstacles decreasing efficiency of treatment of the oncologic diseases. In this study, on the two cell lines (ovarian carcinoma SKOV-3 and neuroblastoma NGP-127), we modeled acquired resistance to five target anticancer drugs. The cells were grown on gradually increasing concentrations of the clinically relevant tyrosine kinase inhibitors (TKIs) Sorafenib, Pazopanib and Sunitinib, and rapalogs Everolimus and Temsirolimus, for 20 weeks. After 20 weeks of culturing, the half-inhibitory concentrations (IC50) increased by 25 - 186% for the particular combinations of the drugs and cell types. We next subjected cells to 10 Gy irradiation, a dose frequently used in clinical radiation therapy. For the SKOV-3, but not NGP-127 cells, for the TKIs Sorafenib, Pazopanib and Sunitinib, we noticed statistically significant increase in capacity to repair radiation-induced DNA double strand breaks compared to naive control cells not previously treated with TKIs. These peculiarities were linked with the increased activation of ATM DNA repair pathway in the TKI-treated SKOV-3, but not NGP-127 cells. Our results provide a new cell culture model for studying anti-cancer therapy efficiency and evidence that there may be a tissue-specific radioresistance emerging as a side effect of treatment with TKIs.
Published on January 11, 2018
READ PUBLICATION →

Pharmacogenomics of GPCR Drug Targets.

Authors: Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM

Abstract: Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 ( approximately 34%) Food and Drug Administration (FDA)-approved drugs and account for a global sales volume of over 180 billion US dollars annually, the prevalence of genetic variation among GPCRs targeted by drugs is unknown. By analyzing data from 68,496 individuals, we find that GPCRs targeted by drugs show genetic variation within functional regions such as drug- and effector-binding sites in the human population. We experimentally show that certain variants of mu-opioid and Cholecystokinin-A receptors could lead to altered or adverse drug response. By analyzing UK National Health Service drug prescription and sales data, we suggest that characterizing GPCR variants could increase prescription precision, improving patients' quality of life, and relieve the economic and societal burden due to variable drug responsiveness. VIDEO ABSTRACT.
Published on January 11, 2018
READ PUBLICATION →

Antibacterial Evaluation and Virtual Screening of New Thiazolyl-Triazole Schiff Bases as Potential DNA-Gyrase Inhibitors.

Authors: Nastasa C, Vodnar DC, Ionut I, Stana A, Benedec D, Tamaian R, Oniga O, Tiperciuc B

Abstract: The global spread of bacterial resistance to drugs used in therapy requires new potent and safe antimicrobial agents. DNA gyrases represent important targets in drug discovery. Schiff bases, thiazole, and triazole derivatives are considered key scaffolds in medicinal chemistry. Fifteen thiazolyl-triazole Schiff bases were evaluated for their antibacterial activity, measuring the growth inhibition zone diameter, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC), against Gram-positive (Staphylococcus aureus, Listeria monocytogenes) and Gram-negative (Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa) bacteria. The inhibition of S. aureus and S. typhimurium was modest. Compounds B1, B2, and B9 showed a similar effect as ciprofloxacin, the antimicrobial reference, against L. monocytogenes. B10 displayed a better effect. Derivatives B1, B5-7, B9, and B11-15 expressed MIC values lower than the reference, against L. monocytogenes. B5, B6, and B11-15 strongly inhibited the growth of P. aeruginosa. All compounds were subjected to an in silico screening of the ADMET (absorption, distribution, metabolism, elimination, toxicity) properties. Molecular docking was performed on the gyrA and gyrB from L. monocytogenes. The virtual screening concluded that thiazolyl-triazole Schiff base B8 is the best drug-like candidate, satisfying requirements for both safety and efficacy, being more potent against the bacterial gyrA than ciprofloxacin.
Published on January 10, 2018
READ PUBLICATION →

Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets.

Authors: Wang Z, Arat S, Magid-Slav M, Brown JR

Abstract: BACKGROUND: With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. RESULTS: Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. CONCLUSIONS: Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.
Published on January 9, 2018
READ PUBLICATION →

Global view of a drug-sensitivity gene network.

Authors: Yang H, Zhang Y, Wang J, Wu T, Liu S, Xu Y, Shang D

Abstract: An important challenge in drug development is to gain insight into the mechanism of drug sensitivity. Looking for insights into the global relationships between drugs and their sensitivity genes would be expected to reveal mechanism of drug sensitivity. Here we constructed a drug-sensitivity gene network (DSGN) based on the relationships between drugs and their sensitivity genes, using drug screened genomic data from the NCI-60 cell line panel, including 181 drugs and 1057 sensitivity genes, and 1646 associations between them. Through network analysis, we found that two drugs that share the same sensitivity genes tend to share the same Anatomical Therapeutic Chemical classification and side effects. We then found that the sensitivity genes of same drugs tend to cluster together in the human interactome and participate in the same biological function modules (pathways). Finally, we noticed that the sensitivity genes and target genes of the same drug have a significant dense distance in the human interactome network and they were functionally related. For example, target genes such as epidermal growth factor receptor gene can activate downstream sensitivity genes of the same drug in the PI3K/Akt pathway. Thus, the DSGN would provide great insights into the mechanism of drug sensitivity.
Published on January 9, 2018
READ PUBLICATION →

Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures.

Authors: Sawada R, Iwata M, Tabei Y, Yamato H, Yamanishi Y

Abstract: Genome-wide identification of all target proteins of drug candidate compounds is a challenging issue in drug discovery. Moreover, emerging phenotypic effects, including therapeutic and adverse effects, are heavily dependent on the inhibition or activation of target proteins. Here we propose a novel computational method for predicting inhibitory and activatory targets of drug candidate compounds. Specifically, we integrated chemically-induced and genetically-perturbed gene expression profiles in human cell lines, which avoided dependence on chemical structures of compounds or proteins. Predictive models for individual target proteins were simultaneously constructed by the joint learning algorithm based on transcriptomic changes in global patterns of gene expression profiles following chemical treatments, and following knock-down and over-expression of proteins. This method discriminates between inhibitory and activatory targets and enables accurate identification of therapeutic effects. Herein, we comprehensively predicted drug-target-disease association networks for 1,124 drugs, 829 target proteins, and 365 human diseases, and validated some of these predictions in vitro. The proposed method is expected to facilitate identification of new drug indications and potential adverse effects.
Published on January 8, 2018
READ PUBLICATION →

Putative functional genes in idiopathic dilated cardiomyopathy.

Authors: Nair NU, Das A, Amit U, Robinson W, Park SG, Basu M, Lugo A, Leor J, Ruppin E, Hannenhalli S

Abstract: Idiopathic dilated cardiomyopathy (DCM) is a complex disorder with a genetic and an environmental component involving multiple genes, many of which are yet to be discovered. We integrate genetic, epigenetic, transcriptomic, phenotypic, and evolutionary features into a method - Hridaya, to infer putative functional genes underlying DCM in a genome-wide fashion, using 213 human heart genomes and transcriptomes. Many genes identified by Hridaya are experimentally shown to cause cardiac complications. We validate the top predicted genes, via five different genome-wide analyses: First, the predicted genes are associated with cardiovascular functions. Second, their knockdowns in mice induce cardiac abnormalities. Third, their inhibition by drugs cause cardiac side effects in human. Fourth, they tend to have differential exon usage between DCM and normal samples. Fifth, analyzing 213 individual genotypes, we show that regulatory polymorphisms of the predicted genes are associated with elevated risk of cardiomyopathy. The stratification of DCM patients based on cardiac expression of the functional genes reveals two subgroups differing in key cardiac phenotypes. Integrating predicted functional genes with cardiomyocyte drug treatment experiments reveals novel potential drug targets. We provide a list of investigational drugs that target the newly identified functional genes that may lead to cardiac side effects.
Published on January 4, 2018
READ PUBLICATION →

ECOdrug: a database connecting drugs and conservation of their targets across species.

Authors: Verbruggen B, Gunnarsson L, Kristiansson E, Osterlund T, Owen SF, Snape JR, Tyler CR

Abstract: Pharmaceuticals are designed to interact with specific molecular targets in humans and these targets generally have orthologs in other species. This provides opportunities for the drug discovery community to use alternative model species for drug development. It also means, however, there is potential for mode of action related effects in non-target wildlife species as many pharmaceuticals reach the environment through patient use and manufacturing wastes. Acquiring insight in drug target ortholog predictions across species and taxonomic groups has proven difficult because of the lack of an optimal strategy and because necessary information is spread across multiple and diverse sources and platforms. We introduce a new research platform tool, ECOdrug, that reliably connects drugs to their protein targets across divergent species. It harmonizes ortholog predictions from multiple sources via a simple user interface underpinning critical applications for a wide range of studies in pharmacology, ecotoxicology and comparative evolutionary biology. ECOdrug can be used to identify species with drug targets and identify drugs that interact with those targets. As such, it can be applied to support intelligent targeted drug safety testing by ensuring appropriate and relevant species are selected in ecological risk assessments. ECOdrug is freely accessible and available at: http://www.ecodrug.org.