Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on January 4, 2018
READ PUBLICATION →

TissGDB: tissue-specific gene database in cancer.

Authors: Kim P, Park A, Han G, Sun H, Jia P, Zhao Z

Abstract: Tissue-specific gene expression is critical in understanding biological processes, physiological conditions, and disease. The identification and appropriate use of tissue-specific genes (TissGenes) will provide important insights into disease mechanisms and organ-specific therapeutic targets. To better understand the tissue-specific features for each cancer type and to advance the discovery of clinically relevant genes or mutations, we built TissGDB (Tissue specific Gene DataBase in cancer) available at http://zhaobioinfo.org/TissGDB. We collected and curated 2461 tissue specific genes (TissGenes) across 22 tissue types that matched the 28 cancer types of The Cancer Genome Atlas (TCGA) from three representative tissue-specific gene expression resources: The Human Protein Atlas (HPA), Tissue-specific Gene Expression and Regulation (TiGER), and Genotype-Tissue Expression (GTEx). For these 2461 TissGenes, we performed gene expression, somatic mutation, and prognostic marker-based analyses across 28 cancer types using TCGA data. Our analyses identified hundreds of TissGenes, including genes that universally kept or lost tissue-specific gene expression, with other features: cancer type-specific isoform expression, fusion with oncogenes or tumor suppressor genes, and markers for protective or risk prognosis. TissGDB provides seven categories of annotations: TissGeneSummary, TissGeneExp, TissGene-miRNA, TissGeneMut, TissGeneNet, TissGeneProg, TissGeneClin.
Published on January 4, 2018
READ PUBLICATION →

PDBe: towards reusable data delivery infrastructure at protein data bank in Europe.

Authors: Mir S, Alhroub Y, Anyango S, Armstrong DR, Berrisford JM, Clark AR, Conroy MJ, Dana JM, Deshpande M, Gupta D, Gutmanas A, Haslam P, Mak L, Mukhopadhyay A, Nadzirin N, Paysan-Lafosse T, Sehnal D, Sen S, Smart OS, Varadi M, Kleywegt GJ, Velankar S

Abstract: The Protein Data Bank in Europe (PDBe, pdbe.org) is actively engaged in the deposition, annotation, remediation, enrichment and dissemination of macromolecular structure data. This paper describes new developments and improvements at PDBe addressing three challenging areas: data enrichment, data dissemination and functional reusability. New features of the PDBe Web site are discussed, including a context dependent menu providing links to raw experimental data and improved presentation of structures solved by hybrid methods. The paper also summarizes the features of the LiteMol suite, which is a set of services enabling fast and interactive 3D visualization of structures, with associated experimental maps, annotations and quality assessment information. We introduce a library of Web components which can be easily reused to port data and functionality available at PDBe to other services. We also introduce updates to the SIFTS resource which maps PDB data to other bioinformatics resources, and the PDBe REST API.
Published on January 4, 2018
READ PUBLICATION →

The 2018 Nucleic Acids Research database issue and the online molecular biology database collection.

Authors: Rigden DJ, Fernandez XM

Abstract: The 2018 Nucleic Acids Research Database Issue contains 181 papers spanning molecular biology. Among them, 82 are new and 84 are updates describing resources that appeared in the Issue previously. The remaining 15 cover databases most recently published elsewhere. Databases in the area of nucleic acids include 3DIV for visualisation of data on genome 3D structure and RNArchitecture, a hierarchical classification of RNA families. Protein databases include the established SMART, ELM and MEROPS while GPCRdb and the newcomer STCRDab cover families of biomedical interest. In the area of metabolism, HMDB and Reactome both report new features while PULDB appears in NAR for the first time. This issue also contains reports on genomics resources including Ensembl, the UCSC Genome Browser and ENCODE. Update papers from the IUPHAR/BPS Guide to Pharmacology and DrugBank are highlights of the drug and drug target section while a number of proteomics databases including proteomicsDB are also covered. The entire Database Issue is freely available online on the Nucleic Acids Research website (https://academic.oup.com/nar). The NAR online Molecular Biology Database Collection has been updated, reviewing 138 entries, adding 88 new resources and eliminating 47 discontinued URLs, bringing the current total to 1737 databases. It is available at http://www.oxfordjournals.org/nar/database/c/.
Published on January 4, 2018
READ PUBLICATION →

Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics.

Authors: Li YH, Yu CY, Li XX, Zhang P, Tang J, Yang Q, Fu T, Zhang X, Cui X, Tu G, Zhang Y, Li S, Yang F, Sun Q, Qin C, Zeng X, Chen Z, Chen YZ, Zhu F

Abstract: Extensive efforts have been directed at the discovery, investigation and clinical monitoring of targeted therapeutics. These efforts may be facilitated by the convenient access of the genetic, proteomic, interactive and other aspects of the therapeutic targets. Here, we describe an update of the Therapeutic target database (TTD) previously featured in NAR. This update includes: (i) 2000 drug resistance mutations in 83 targets and 104 target/drug regulatory genes, which are resistant to 228 drugs targeting 63 diseases (49 targets of 61 drugs with patient prevalence data); (ii) differential expression profiles of 758 targets in the disease-relevant drug-targeted tissue of 12 615 patients of 70 diseases; (iii) expression profiles of 629 targets in the non-targeted tissues of 2565 healthy individuals; (iv) 1008 target combinations of 1764 drugs and the 1604 target combination of 664 multi-target drugs; (v) additional 48 successful, 398 clinical trial and 21 research targets, 473 approved, 812 clinical trial and 1120 experimental drugs, and (vi) ICD-10-CM and ICD-9-CM codes for additional 482 targets and 262 drugs against 98 disease conditions. This update makes TTD more useful for facilitating the patient focused research, discovery and clinical investigations of the targeted therapeutics. TTD is accessible at http://bidd.nus.edu.sg/group/ttd/ttd.asp.
Published on January 4, 2018
READ PUBLICATION →

DGIdb 3.0: a redesign and expansion of the drug-gene interaction database.

Authors: Cotto KC, Wagner AH, Feng YY, Kiwala S, Coffman AC, Spies G, Wollam A, Spies NC, Griffith OL, Griffith M

Abstract: The drug-gene interaction database (DGIdb, www.dgidb.org) consolidates, organizes and presents drug-gene interactions and gene druggability information from papers, databases and web resources. DGIdb normalizes content from 30 disparate sources and allows for user-friendly advanced browsing, searching and filtering for ease of access through an intuitive web user interface, application programming interface (API) and public cloud-based server image. DGIdb v3.0 represents a major update of the database. Nine of the previously included 24 sources were updated. Six new resources were added, bringing the total number of sources to 30. These updates and additions of sources have cumulatively resulted in 56 309 interaction claims. This has also substantially expanded the comprehensive catalogue of druggable genes and anti-neoplastic drug-gene interactions included in the DGIdb. Along with these content updates, v3.0 has received a major overhaul of its codebase, including an updated user interface, preset interaction search filters, consolidation of interaction information into interaction groups, greatly improved search response times and upgrading the underlying web application framework. In addition, the expanded API features new endpoints which allow users to extract more detailed information about queried drugs, genes and drug-gene interactions, including listings of PubMed IDs, interaction type and other interaction metadata.
Published on January 4, 2018
READ PUBLICATION →

HMDB 4.0: the human metabolome database for 2018.

Authors: Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A

Abstract: The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB's chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC-MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science.
Published on January 4, 2018
READ PUBLICATION →

iUUCD 2.0: an update with rich annotations for ubiquitin and ubiquitin-like conjugations.

Authors: Zhou J, Xu Y, Lin S, Guo Y, Deng W, Zhang Y, Guo A, Xue Y

Abstract: Here, we described the updated database iUUCD 2.0 (http://iuucd.biocuckoo.org/) for ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin-protein ligases (E3s), deubiquitinating enzymes (DUBs), ubiquitin/ubiquitin-like binding domains (UBDs) and ubiquitin-like domains (ULDs), which act as key regulators in modulating ubiquitin and ubiquitin-like (UB/UBL) conjugations. In total, iUUCD 2.0 contained 136 512 UB/UBL regulators, including 1230 E1s, 5636 E2s, 93 343 E3s, 9548 DUBs, 30 173 UBDs and 11 099 ULDs in 148 eukaryotic species. In particular, we provided rich annotations for regulators of eight model organisms, especially in humans, by compiling and integrating the knowledge from nearly 70 widely used public databases that cover cancer mutations, single nucleotide polymorphisms (SNPs), mRNA expression, DNA and RNA elements, protein-protein interactions, protein 3D structures, disease-associated information, drug-target relations, post-translational modifications, DNA methylation and protein expression/proteomics. Compared with our previously developed UUCD 1.0 ( approximately 0.41 GB), iUUCD 2.0 has a size of approximately 32.1 GB of data with a >75-fold increase in data volume. We anticipate that iUUCD 2.0 can be a more useful resource for further study of UB/UBL conjugations.
Published on January 4, 2018
READ PUBLICATION →

SuperDRUG2: a one stop resource for approved/marketed drugs.

Authors: Siramshetty VB, Eckert OA, Gohlke BO, Goede A, Chen Q, Devarakonda P, Preissner S, Preissner R

Abstract: Regular monitoring of drug regulatory agency web sites and similar resources for information on new drug approvals and changes to legal status of marketed drugs is impractical. It requires navigation through several resources to find complete information about a drug as none of the publicly accessible drug databases provide all features essential to complement in silico drug discovery. Here, we propose SuperDRUG2 (http://cheminfo.charite.de/superdrug2) as a comprehensive knowledge-base of approved and marketed drugs. We provide the largest collection of drugs (containing 4587 active pharmaceutical ingredients) which include small molecules, biological products and other drugs. The database is intended to serve as a one-stop resource providing data on: chemical structures, regulatory details, indications, drug targets, side-effects, physicochemical properties, pharmacokinetics and drug-drug interactions. We provide a 3D-superposition feature that facilitates estimation of the fit of a drug in the active site of a target with a known ligand bound to it. Apart from multiple other search options, we introduced pharmacokinetics simulation as a unique feature that allows users to visualise the 'plasma concentration versus time' profile for a given dose of drug with few other adjustable parameters to simulate the kinetics in a healthy individual and poor or extensive metabolisers.
Published on January 4, 2018
READ PUBLICATION →

PedAM: a database for Pediatric Disease Annotation and Medicine.

Authors: Jia J, An Z, Ming Y, Guo Y, Li W, Li X, Liang Y, Guo D, Tai J, Chen G, Jin Y, Liu Z, Ni X, Shi T

Abstract: There is a significant number of children around the world suffering from the consequence of the misdiagnosis and ineffective treatment for various diseases. To facilitate the precision medicine in pediatrics, a database namely the Pediatric Disease Annotations & Medicines (PedAM) has been built to standardize and classify pediatric diseases. The PedAM integrates both biomedical resources and clinical data from Electronic Medical Records to support the development of computational tools, by which enables robust data analysis and integration. It also uses disease-manifestation (D-M) integrated from existing biomedical ontologies as prior knowledge to automatically recognize text-mined, D-M-specific syntactic patterns from 774 514 full-text articles and 8 848 796 abstracts in MEDLINE. Additionally, disease connections based on phenotypes or genes can be visualized on the web page of PedAM. Currently, the PedAM contains standardized 8528 pediatric disease terms (4542 unique disease concepts and 3986 synonyms) with eight annotation fields for each disease, including definition synonyms, gene, symptom, cross-reference (Xref), human phenotypes and its corresponding phenotypes in the mouse. The database PedAM is freely accessible at http://www.unimd.org/pedam/.
Published on January 4, 2018
READ PUBLICATION →

The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY.

Authors: Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S, Gray AJG, Bruce L, Alexander SPH, Anderton S, Bryant C, Davenport AP, Doerig C, Fabbro D, Levi-Schaffer F, Spedding M, Davies JA

Abstract: The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, www.guidetopharmacology.org) and its precursor IUPHAR-DB, have captured expert-curated interactions between targets and ligands from selected papers in pharmacology and drug discovery since 2003. This resource continues to be developed in conjunction with the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS). As previously described, our unique model of content selection and quality control is based on 96 target-class subcommittees comprising 512 scientists collaborating with in-house curators. This update describes content expansion, new features and interoperability improvements introduced in the 10 releases since August 2015. Our relationship matrix now describes approximately 9000 ligands, approximately 15 000 binding constants, approximately 6000 papers and approximately 1700 human proteins. As an important addition, we also introduce our newly funded project for the Guide to IMMUNOPHARMACOLOGY (GtoImmuPdb, www.guidetoimmunopharmacology.org). This has been 'forked' from the well-established GtoPdb data model and expanded into new types of data related to the immune system and inflammatory processes. This includes new ligands, targets, pathways, cell types and diseases for which we are recruiting new IUPHAR expert committees. Designed as an immunopharmacological gateway, it also has an emphasis on potential therapeutic interventions.