Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on October 20, 2017
READ PUBLICATION →

A Systematic Review of Computational Drug Discovery, Development, and Repurposing for Ebola Virus Disease Treatment.

Authors: Schuler J, Hudson ML, Schwartz D, Samudrala R

Abstract: Ebola virus disease (EVD) is a deadly global public health threat, with no currently approved treatments. Traditional drug discovery and development is too expensive and inefficient to react quickly to the threat. We review published research studies that utilize computational approaches to find or develop drugs that target the Ebola virus and synthesize its results. A variety of hypothesized and/or novel treatments are reported to have potential anti-Ebola activity. Approaches that utilize multi-targeting/polypharmacology have the most promise in treating EVD.
Published on October 18, 2017
READ PUBLICATION →

Dissecting the Underlying Pharmaceutical Mechanism of Chinese Traditional Medicine Yun-Pi-Yi-Shen-Tong-Du-Tang Acting on Ankylosing Spondylitis through Systems Biology Approaches.

Authors: Xie D, Huang L, Zhao G, Yu Y, Gao J, Li H, Wen C

Abstract: Traditional Chinese Medicine (TCM) has been served as complementary medicine for Ankylosing Spondylitis (AS) treatment for a long time. Yun-Pi-Yi-Shen-Tong-Du-Tang (Y-Y-T) is a novel empirical formula designed by Prof. Chengping Wen. In this study, a retrospective investigation supported efficacy of Y-Y-T and then we deciphered the underlying molecular mechanism of the efficacy. Herbal ingredients and targeting proteins were collected from TCMID. PPI networks were constructed to further infer the relationship among Y-Y-T, drugs used for treating AS, differentially expressed genes of AS patients and AS disease proteins. Finally, it was suggested that TLR signaling pathway and T cell receptor signaling pathway may involve in the biological processes of AS progression and contribute to the curative effect and proteins such as JAK2, STAT3, HSP90AA1, TNF and PTEN were the key targets. Our systemic investigation to infer therapeutic mechanism of Y-Y-T for AS treatment provides a new insight in understanding TCM pharmacology.
Published on October 16, 2017
READ PUBLICATION →

Discovery of Key Physicochemical, Structural, and Spatial Properties of RNA-Targeted Bioactive Ligands.

Authors: Morgan BS, Forte JE, Culver RN, Zhang Y, Hargrove AE

Abstract: While a myriad non-coding RNAs are known to be essential in cellular processes and misregulated in diseases, the development of RNA-targeted small molecule probes has met with limited success. To elucidate the guiding principles for selective small molecule/RNA recognition, we analyzed cheminformatic and shape-based descriptors for 104 RNA-targeted ligands with demonstrated biological activity (RNA-targeted BIoactive ligaNd Database, R-BIND). We then compared R-BIND to both FDA-approved small molecule drugs and RNA ligands without reported bioactivity. Several striking trends emerged for bioactive RNA ligands, including: 1) Compliance to medicinal chemistry rules, 2) distinctive structural features, and 3) enrichment in rod-like shapes over others. This work provides unique insights that directly facilitate the selection and synthesis of RNA-targeted libraries with the goal of efficiently identifying selective small molecule ligands for therapeutically relevant RNAs.
Published on October 16, 2017
READ PUBLICATION →

Predicting combinative drug pairs towards realistic screening via integrating heterogeneous features.

Authors: Shi JY, Li JX, Gao K, Lei P, Yiu SM

Abstract: BACKGROUND: Drug Combination is one of the effective approaches for treating complex diseases. However, determining combinative drug pairs in clinical trials is still costly. Thus, computational approaches are used to identify potential drug pairs in advance. Existing computational approaches have the following shortcomings: (i) the lack of an effective integration of heterogeneous features leads to a time-consuming training and even results in an over-fitted classifier; and (ii) the narrow consideration of predicting potential drug combinations only among known drugs having known combinations cannot meet the demand of realistic screenings, which pay more attention to potential combinative pairs among newly-coming drugs that have no approved combination with other drugs at all. RESULTS: In this paper, to tackle the above two problems, we propose a novel drug-driven approach for predicting potential combinative pairs on a large scale. We define four new features based on heterogeneous data and design an efficient fusion scheme to integrate these feature. Moreover importantly, we elaborate appropriate cross-validations towards realistic screening scenarios of drug combinations involving both known drugs and new drugs. In addition, we perform an extra investigation to show how each kind of heterogeneous features is related to combinative drug pairs. The investigation inspires the design of our approach. Experiments on real data demonstrate the effectiveness of our fusion scheme for integrating heterogeneous features and its predicting power in three scenarios of realistic screening. In terms of both AUC and AUPR, the prediction among known drugs achieves 0.954 and 0.821, that between known drugs and new drugs achieves 0.909 and 0.635, and that among new drugs achieves 0.809 and 0.592 respectively. CONCLUSIONS: Our approach provides not only an effective tool to integrate heterogeneous features but also the first tool to predict potential combinative pairs among new drugs.
Published on October 3, 2017
READ PUBLICATION →

A systematic analysis of FDA-approved anticancer drugs.

Authors: Sun J, Wei Q, Zhou Y, Wang J, Liu Q, Xu H

Abstract: BACKGROUND: The discovery of novel anticancer drugs is critical for the pharmaceutical research and development, and patient treatment. Repurposing existing drugs that may have unanticipated effects as potential candidates is one way to meet this important goal. Systematic investigation of efficient anticancer drugs could provide valuable insights into trends in the discovery of anticancer drugs, which may contribute to the systematic discovery of new anticancer drugs. RESULTS: In this study, we collected and analyzed 150 anticancer drugs approved by the US Food and Drug Administration (FDA). Based on drug mechanism of action, these agents are divided into two groups: 61 cytotoxic-based drugs and 89 target-based drugs. We found that in the recent years, the proportion of targeted agents tended to be increasing, and the targeted drugs tended to be delivered as signal drugs. For 89 target-based drugs, we collected 102 effect-mediating drug targets in the human genome and found that most targets located on the plasma membrane and most of them belonged to the enzyme, especially tyrosine kinase. From above 150 drugs, we built a drug-cancer network, which contained 183 nodes (150 drugs and 33 cancer types) and 248 drug-cancer associations. The network indicated that the cytotoxic drugs tended to be used to treat more cancer types than targeted drugs. From 89 targeted drugs, we built a cancer-drug-target network, which contained 214 nodes (23 cancer types, 89 drugs, and 102 targets) and 313 edges (118 drug-cancer associations and 195 drug-target associations). Starting from the network, we discovered 133 novel drug-cancer associations among 52 drugs and 16 cancer types by applying the common target-based approach. Most novel drug-cancer associations (116, 87%) are supported by at least one clinical trial study. CONCLUSIONS: In this study, we provided a comprehensive data source, including anticancer drugs and their targets and performed a detailed analysis in term of historical tendency and networks. Its application to identify novel drug-cancer associations demonstrated that the data collected in this study is promising to serve as a fundamental for anticancer drug repurposing and development.
Published on October 3, 2017
READ PUBLICATION →

Drug repurposing in idiopathic pulmonary fibrosis filtered by a bioinformatics-derived composite score.

Authors: Karatzas E, Bourdakou MM, Kolios G, Spyrou GM

Abstract: Idiopathic Pulmonary Fibrosis (IPF) is a rare disease of the respiratory system in which the lungs stiffen and get scarred, resulting in breathing weakness and eventually leading to death. Drug repurposing is a process that provides evidence for existing drugs that may also be effective in different diseases. In this study, we present a computational pipeline having as input a number of gene expression datasets from early and advanced stages of IPF and as output lists of repurposed drugs ranked with a novel composite score. We have devised and used a scoring formula in order to rank the repurposed drugs, consolidating the standard repurposing score with structural, functional and side effects' scores for each drug per stage of IPF. The whole pipeline involves the selection of proper gene expression datasets, data preprocessing and statistical analysis, selection of the most important genes related to the disease, analysis of biological pathways, investigation of related molecular mechanisms, identification of fibrosis-related microRNAs, drug repurposing, structural and literature-based analysis of the repurposed drugs.
Published on October 3, 2017
READ PUBLICATION →

MD-Miner: a network-based approach for personalized drug repositioning.

Authors: Wu H, Miller E, Wijegunawardana D, Regan K, Payne PRO, Li F

Abstract: BACKGROUND: Due to advances in next generation sequencing technologies and corresponding reductions in cost, it is now attainable to investigate genome-wide gene expression and variants at a patient-level, so as to better understand and anticipate heterogeneous responses to therapy. Consequently, it is feasible to inform personalized drug treatment decisions using personal genomics data. However, these efforts are limited due to a lack of reliable computational approaches for predicting effective drugs for individual patients. The reverse gene set enrichment analysis (i.e., connectivity mapping) approach and its variants have been widely and successfully used for drug prediction. However, the performance of these methods is limited by undefined mechanism of action (MoA) of drugs and reliance on cohorts of patients rather than personalized predictions for individual patients. RESULTS: In this study, we have developed and evaluated a computational approach, known as Mechanism and Drug Miner (MD-Miner), using a network-based computational approach to predict effective drugs and reveal potential drug mechanisms of action at the level of signaling pathways. Specifically, the patient-specific signaling network is constructed by integrating known disease associated genes with patient-derived gene expression profiles. In parallel, a drug mechanism of action network is constructed by integrating drug targets and z-score profiles of drug-induced gene expression (pre vs. post-drug treatment). Potentially effective candidate drugs are prioritized according to the number of common genes between the patient-specific dysfunctional signaling network and drug MoA network. We evaluated the MD-Miner method on the PC-3 prostate cancer cell line, and showed that it significantly improved the success rate of discovering effective drugs compared with the random selection, and could provide insight into potential mechanisms of action. CONCLUSIONS: This work provides a signaling network-based drug repositioning approach. Compared with the reverse gene signature based drug repositioning approaches, the proposed method can provide clues of mechanism of action in terms of signaling transduction networks.
Published on October 1, 2017
READ PUBLICATION →

Inhibition of CDK4/6 by Palbociclib Significantly Extends Survival in Medulloblastoma Patient-Derived Xenograft Mouse Models.

Authors: Cook Sangar ML, Genovesi LA, Nakamoto MW, Davis MJ, Knobluagh SE, Ji P, Millar A, Wainwright BJ, Olson JM

Abstract: Purpose: Bioinformatics analysis followed by in vivo studies in patient-derived xenograft (PDX) models were used to identify and validate CDK 4/6 inhibition as an effective therapeutic strategy for medulloblastoma, particularly group 3 MYC-amplified tumors that have the worst clinical prognosis.Experimental Design: A protein interaction network derived from a Sleeping Beauty mutagenesis model of medulloblastoma was used to identify potential novel therapeutic targets. The top hit from this analysis was validated in vivo using PDX models of medulloblastoma implanted subcutaneously in the flank and orthotopically in the cerebellum of mice.Results: Informatics analysis identified the CDK4/6/CYCLIN D/RB pathway as a novel "druggable" pathway for multiple subgroups of medulloblastoma. Palbociclib, a highly specific inhibitor of CDK4/6, was found to inhibit RB phosphorylation and cause G1 arrest in PDX models of medulloblastoma. The drug caused rapid regression of Sonic hedgehog (SHH) and MYC-amplified group 3 medulloblastoma subcutaneous tumors and provided a highly significant survival advantage to mice bearing MYC-amplified intracranial tumors.Conclusions: Inhibition of CDK4/6 is potentially a highly effective strategy for the treatment of SHH and MYC-amplified group 3 medulloblastoma. Clin Cancer Res; 23(19); 5802-13. (c)2017 AACR.
Published in September 2017
READ PUBLICATION →

Large-Scale Prediction of Drug-Target Interaction: a Data-Centric Review.

Authors: Cheng T, Hao M, Takeda T, Bryant SH, Wang Y

Abstract: The prediction of drug-target interactions (DTIs) is of extraordinary significance to modern drug discovery in terms of suggesting new drug candidates and repositioning old drugs. Despite technological advances, large-scale experimental determination of DTIs is still expensive and laborious. Effective and low-cost computational alternatives remain in strong need. Meanwhile, open-access resources have been rapidly growing with massive amount of bioactivity data becoming available, creating unprecedented opportunities for the development of novel in silico models for large-scale DTI prediction. In this work, we review the state-of-the-art computational approaches for identifying DTIs from a data-centric perspective: what the underlying data are and how they are utilized in each study. We also summarize popular public data resources and online tools for DTI prediction. It is found that various types of data were employed including properties of chemical structures, drug therapeutic effects and side effects, drug-target binding, drug-drug interactions, bioactivity data of drug molecules across multiple biological targets, and drug-induced gene expressions. More often, the heterogeneous data were integrated to offer better performance. However, challenges remain such as handling data imbalance, incorporating negative samples and quantitative bioactivity data, as well as maintaining cross-links among different data sources, which are essential for large-scale and automated information integration.
Published in September 2017
READ PUBLICATION →

Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks.

Authors: Kunimoto R, Bajorath J

Abstract: Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities. The design of network representations that combine patent molecules and other bioactive compounds and view patent information in the context of current bioactive chemical space aids in the analysis of patents and further extends the use of molecular networks to explore structure-activity relationships.