Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in November 2015
READ PUBLICATION →

An integrated network platform for contextual prioritization of drugs and pathways.

Authors: Segura-Cabrera A, Singh N, Komurov K

Abstract: Repurposing of drugs to novel disease indications has promise for faster clinical translation. However, identifying the best drugs for a given pathological context is not trivial. We developed an integrated random walk-based network framework that combines functional biomolecular relationships and known drug-target interactions as a platform for contextual prioritization of drugs, genes and pathways. We show that the use of gene-centric or drug-centric data, such as gene expression data or a phenotypic drug screen, respectively, within this network platform can effectively prioritize drugs and pathways, respectively, to the studied biological context. We demonstrate that various genomic data can be used as contextual cues to effectively prioritize drugs to the studied context, while similarly, phenotypic drug screen data can be used to effectively prioritize genes and pathways to the studied phenotypic context. As a proof-of-principle, we showcase the use of our platform to identify known and novel drug indications against different subsets of breast cancers through contextual prioritization based on genome-wide gene expression, shRNA and drug screen and clinical survival data. The integrated network and associated methods are incorporated into the NetWalker suite for functional genomics analysis ().
Published in November 2015
READ PUBLICATION →

Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 In Vitro High-Throughput Screening Assays for the Estrogen Receptor.

Authors: Judson RS, Magpantay FM, Chickarmane V, Haskell C, Tania N, Taylor J, Xia M, Huang R, Rotroff DM, Filer DL, Houck KA, Martin MT, Sipes N, Richard AM, Mansouri K, Setzer RW, Knudsen TB, Crofton KM, Thomas RS

Abstract: We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation, and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform ("assay interference"). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 111 (6.1%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in vivo endocrine testing. Finally, this model is generalizable to any molecular pathway for which there are multiple upstream and downstream assays available.
Published on November 26, 2015
READ PUBLICATION →

Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target.

Authors: Chiba S, Ikeda K, Ishida T, Gromiha MM, Taguchi YH, Iwadate M, Umeyama H, Hsin KY, Kitano H, Yamamoto K, Sugaya N, Kato K, Okuno T, Chikenji G, Mochizuki M, Yasuo N, Yoshino R, Yanagisawa K, Ban T, Teramoto R, Ramakrishnan C, Thangakani AM, Velmurugan D, Prathipati P, Ito J, Tsuchiya Y, Mizuguchi K, Honma T, Hirokawa T, Akiyama Y, Sekijima M

Abstract: A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective.
Published on November 18, 2015
READ PUBLICATION →

Inhibition by small-molecule ligands of formation of amyloid fibrils of an immunoglobulin light chain variable domain.

Authors: Brumshtein B, Esswein SR, Salwinski L, Phillips ML, Ly AT, Cascio D, Sawaya MR, Eisenberg DS

Abstract: Overproduction of immunoglobulin light chains leads to systemic amyloidosis, a lethal disease characterized by the formation of amyloid fibrils in patients' tissues. Excess light chains are in equilibrium between dimers and less stable monomers which can undergo irreversible aggregation to the amyloid state. The dimers therefore must disassociate into monomers prior to forming amyloid fibrils. Here we identify ligands that inhibit amyloid formation by stabilizing the Mcg light chain variable domain dimer and shifting the equilibrium away from the amyloid-prone monomer.
Published on November 12, 2015
READ PUBLICATION →

A Systems Biology-Based Investigation into the Pharmacological Mechanisms of Sheng-ma-bie-jia-tang Acting on Systemic Lupus Erythematosus by Multi-Level Data Integration.

Authors: Huang L, Lv Q, Liu F, Shi T, Wen C

Abstract: Sheng-ma-bie-jia-tang (SMBJT) is a Traditional Chinese Medicine (TCM) formula that is widely used for the treatment of Systemic Lupus Erythematosus (SLE) in China. However, molecular mechanism behind this formula remains unknown. Here, we systematically analyzed targets of the ingredients in SMBJT to evaluate its potential molecular mechanism. First, we collected 1,267 targets from our previously published database, the Traditional Chinese Medicine Integrated Database (TCMID). Next, we conducted gene ontology and pathway enrichment analyses for these targets and determined that they were enriched in metabolism (amino acids, fatty acids, etc.) and signaling pathways (chemokines, Toll-like receptors, adipocytokines, etc.). 96 targets, which are known SLE disease proteins, were identified as essential targets and the rest 1,171 targets were defined as common targets of this formula. The essential targets directly interacted with SLE disease proteins. Besides, some common targets also had essential connections to both key targets and SLE disease proteins in enriched signaling pathway, e.g. toll-like receptor signaling pathway. We also found distinct function of essential and common targets in immune system processes. This multi-level approach to deciphering the underlying mechanism of SMBJT treatment of SLE details a new perspective that will further our understanding of TCM formulas.
Published on November 6, 2015
READ PUBLICATION →

Methods for biological data integration: perspectives and challenges.

Authors: Gligorijevic V, Przulj N

Abstract: Rapid technological advances have led to the production of different types of biological data and enabled construction of complex networks with various types of interactions between diverse biological entities. Standard network data analysis methods were shown to be limited in dealing with such heterogeneous networked data and consequently, new methods for integrative data analyses have been proposed. The integrative methods can collectively mine multiple types of biological data and produce more holistic, systems-level biological insights. We survey recent methods for collective mining (integration) of various types of networked biological data. We compare different state-of-the-art methods for data integration and highlight their advantages and disadvantages in addressing important biological problems. We identify the important computational challenges of these methods and provide a general guideline for which methods are suited for specific biological problems, or specific data types. Moreover, we propose that recent non-negative matrix factorization-based approaches may become the integration methodology of choice, as they are well suited and accurate in dealing with heterogeneous data and have many opportunities for further development.
Published on November 4, 2015
READ PUBLICATION →

Predicting drug side effects by multi-label learning and ensemble learning.

Authors: Zhang W, Liu F, Luo L, Zhang J

Abstract: BACKGROUND: Predicting drug side effects is an important topic in the drug discovery. Although several machine learning methods have been proposed to predict side effects, there is still space for improvements. Firstly, the side effect prediction is a multi-label learning task, and we can adopt the multi-label learning techniques for it. Secondly, drug-related features are associated with side effects, and feature dimensions have specific biological meanings. Recognizing critical dimensions and reducing irrelevant dimensions may help to reveal the causes of side effects. METHODS: In this paper, we propose a novel method 'feature selection-based multi-label k-nearest neighbor method' (FS-MLKNN), which can simultaneously determine critical feature dimensions and construct high-accuracy multi-label prediction models. RESULTS: Computational experiments demonstrate that FS-MLKNN leads to good performances as well as explainable results. To achieve better performances, we further develop the ensemble learning model by integrating individual feature-based FS-MLKNN models. When compared with other state-of-the-art methods, the ensemble method produces better performances on benchmark datasets. CONCLUSIONS: In conclusion, FS-MLKNN and the ensemble method are promising tools for the side effect prediction. The source code and datasets are available in the Additional file 1.
Published in October 2015
READ PUBLICATION →

Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures.

Authors: Zhang B, Vogt M, Maggiora GM, Bajorath J

Abstract: Chemical space networks (CSNs) have recently been introduced as an alternative to other coordinate-free and coordinate-based chemical space representations. In CSNs, nodes represent compounds and edges pairwise similarity relationships. In addition, nodes are annotated with compound property information such as biological activity. CSNs have been applied to view biologically relevant chemical space in comparison to random chemical space samples and found to display well-resolved topologies at low edge density levels. The way in which molecular similarity relationships are assessed is an important determinant of CSN topology. Previous CSN versions were based on numerical similarity functions or the assessment of substructure-based similarity. Herein, we report a new CSN design that is based upon combined numerical and substructure similarity evaluation. This has been facilitated by calculating numerical similarity values on the basis of maximum common substructures (MCSs) of compounds, leading to the introduction of MCS-based CSNs (MCS-CSNs). This CSN design combines advantages of continuous numerical similarity functions with a robust and chemically intuitive substructure-based assessment. Compared to earlier version of CSNs, MCS-CSNs are characterized by a further improved organization of local compound communities as exemplified by the delineation of drug-like subspaces in regions of biologically relevant chemical space.
Published in October 2015
READ PUBLICATION →

Publisher's Note:Abstraction for data integration:Fusing mammalian molecular, cellular and phenotype big datasets for better knowledge extraction.

Authors: Rouillard AD, Wang Z, Ma'ayan A

Abstract: 
Published on October 30, 2015
READ PUBLICATION →

Network analysis of gene essentiality in functional genomics experiments.

Authors: Jiang P, Wang H, Li W, Zang C, Li B, Wong YJ, Meyer C, Liu JS, Aster JC, Liu XS

Abstract: Many genomic techniques have been developed to study gene essentiality genome-wide, such as CRISPR and shRNA screens. Our analyses of public CRISPR screens suggest protein interaction networks, when integrated with gene expression or histone marks, are highly predictive of gene essentiality. Meanwhile, the quality of CRISPR and shRNA screen results can be significantly enhanced through network neighbor information. We also found network neighbor information to be very informative on prioritizing ChIP-seq target genes and survival indicator genes from tumor profiling. Thus, our study provides a general method for gene essentiality analysis in functional genomic experiments ( http://nest.dfci.harvard.edu ).