Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in May 2015
READ PUBLICATION →

Structures of aspartate aminotransferases from Trypanosoma brucei, Leishmania major and Giardia lamblia.

Authors: Abendroth J, Choi R, Wall A, Clifton MC, Lukacs CM, Staker BL, Van Voorhis W, Myler P, Lorimer DD, Edwards TE

Abstract: The structures of three aspartate aminotransferases (AATs) from eukaryotic pathogens were solved within the Seattle Structural Genomics Center for Infectious Disease (SSGCID). Both the open and closed conformations of AAT were observed. Pyridoxal phosphate was bound to the active site via a Schiff base to a conserved lysine. An active-site mutant showed that Trypanosoma brucei AAT still binds pyridoxal phosphate even in the absence of the tethering lysine. The structures highlight the challenges for the structure-based design of inhibitors targeting the active site, while showing options for inhibitor design targeting the N-terminal arm.
Published in May 2015
READ PUBLICATION →

Structures of a histidine triad family protein from Entamoeba histolytica bound to sulfate, AMP and GMP.

Authors: Lorimer DD, Choi R, Abramov A, Nakazawa Hewitt S, Gardberg AS, Van Voorhis WC, Staker BL, Myler PJ, Edwards TE

Abstract: Three structures of the histidine triad family protein from Entamoeba histolytica, the causative agent of amoebic dysentery, were solved at high resolution within the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The structures have sulfate (PDB entry 3oj7), AMP (PDB entry 3omf) or GMP (PDB entry 3oxk) bound in the active site, with sulfate occupying the same space as the alpha-phosphate of the two nucleotides. The C(alpha) backbones of the three structures are nearly superimposable, with pairwise r.m.s.d.s ranging from 0.06 to 0.13 A.
Published in May 2015
READ PUBLICATION →

Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors.

Authors: Welch MA, Kock K, Urban TJ, Brouwer KL, Swaan PW

Abstract: Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed using 257 BSEP and 86 MRP4 inhibitors and noninhibitors in the training set. Models were externally validated and used to predict the affinity of compounds toward BSEP and MRP4 in the DrugBank database. Compounds with a score above the median fingerprint threshold were considered to have significant inhibitory effects on MRP4 and BSEP. Common feature pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a training set of nine well characterized MRP4 inhibitors and nine potent BSEP inhibitors. Bayesian models for BSEP and MRP4 inhibition/noninhibition were developed with cross-validated receiver operator curve values greater than 0.8 for the test sets, indicating robust models with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond acceptor features, albeit in distinct spatial arrangements. Similar molecular features between MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models demonstrated significant classification accuracy and predictability.
Published in May 2015
READ PUBLICATION →

Development of data representation standards by the human proteome organization proteomics standards initiative.

Authors: Deutsch EW, Albar JP, Binz PA, Eisenacher M, Jones AR, Mayer G, Omenn GS, Orchard S, Vizcaino JA, Hermjakob H

Abstract: OBJECTIVE: To describe the goals of the Proteomics Standards Initiative (PSI) of the Human Proteome Organization, the methods that the PSI has employed to create data standards, the resulting output of the PSI, lessons learned from the PSI's evolution, and future directions and synergies for the group. MATERIALS AND METHODS: The PSI has 5 categories of deliverables that have guided the group. These are minimum information guidelines, data formats, controlled vocabularies, resources and software tools, and dissemination activities. These deliverables are produced via the leadership and working group organization of the initiative, driven by frequent workshops and ongoing communication within the working groups. Official standards are subjected to a rigorous document process that includes several levels of peer review prior to release. RESULTS: We have produced and published minimum information guidelines describing what information should be provided when making data public, either via public repositories or other means. The PSI has produced a series of standard formats covering mass spectrometer input, mass spectrometer output, results of informatics analysis (both qualitative and quantitative analyses), reports of molecular interaction data, and gel electrophoresis analyses. We have produced controlled vocabularies that ensure that concepts are uniformly annotated in the formats and engaged in extensive software development and dissemination efforts so that the standards can efficiently be used by the community.Conclusion In its first dozen years of operation, the PSI has produced many standards that have accelerated the field of proteomics by facilitating data exchange and deposition to data repositories. We look to the future to continue developing standards for new proteomics technologies and workflows and mechanisms for integration with other omics data types. Our products facilitate the translation of genomics and proteomics findings to clinical and biological phenotypes. The PSI website can be accessed at http://www.psidev.info.
Published in May 2015
READ PUBLICATION →

Event-based text mining for biology and functional genomics.

Authors: Ananiadou S, Thompson P, Nawaz R, McNaught J, Kell DB

Abstract: The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of 'events', i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research.
Published in May 2015
READ PUBLICATION →

Structural and Activity Profile Relationships Between Drug Scaffolds.

Authors: Hu Y, Bajorath J

Abstract: Core structures of current drugs have been assembled and their structural relationships and activity profiles have been explored. Drug scaffolds were frequently involved in different types of structural relationships. In addition, a variety of activity profile relationships between structurally related drug scaffolds were detected, ranging from closely overlapping to distinct profiles. Furthermore, when structural and activity profile relationships of scaffolds from drugs and bioactive compounds were compared, systematic differences were detected. Consensus activity profiles were introduced as a new approach for the qualitative and quantitative assessment of activity similarity of structurally related drugs represented by the same scaffold. On the basis of consensus activity profiles, scaffolds representing drugs active against distinct targets can be distinguished from drugs having similar target profiles and target hypotheses can be derived for individual drugs. Given the results of our analysis, drug scaffolds have been systematically organized according to structural and activity profile criteria. Our scaffold sets and the associated information are made freely available.
Published on May 21, 2015
READ PUBLICATION →

OncoRep: an n-of-1 reporting tool to support genome-guided treatment for breast cancer patients using RNA-sequencing.

Authors: Meissner T, Fisch KM, Gioia L, Su AI

Abstract: BACKGROUND: Breast cancer comprises multiple tumor entities associated with different biological features and clinical behaviors, making individualized medicine a powerful tool to bring the right drug to the right patient. Next generation sequencing of RNA (RNA-Seq) is a suitable method to detect targets for individualized treatment. Challenges that arise are i) preprocessing and analyzing RNA-Seq data in the n-of-1 setting, ii) extracting clinically relevant and actionable targets from complex data, iii) integrating drug databases, and iv) reporting results to clinicians in a timely and understandable manner. RESULTS: To address these challenges, we present OncoRep, an RNA-Seq based n-of-1 reporting tool for breast cancer patients. It reports molecular classification, altered genes and pathways, gene fusions, clinically actionable mutations and drug recommendations. It visualizes the data in an approachable html-based interactive report and a PDF clinical report, providing the clinician and tumor board with a tool to guide the treatment decision making process. CONCLUSIONS: OncoRep is free and open-source ( https://bitbucket.org/sulab/oncorep/ ), thereby offering a platform for future development and innovation by the community.
Published on May 19, 2015
READ PUBLICATION →

PALM-IST: Pathway Assembly from Literature Mining--an Information Search Tool.

Authors: Mandloi S, Chakrabarti S

Abstract: Manual curation of biomedical literature has become extremely tedious process due to its exponential growth in recent years. To extract meaningful information from such large and unstructured text, newer and more efficient mining tool is required. Here, we introduce PALM-IST, a computational platform that not only allows users to explore biomedical abstracts using keyword based text mining but also extracts biological entity (e.g., gene/protein, drug, disease, biological processes, cellular component, etc.) information from the extracted text and subsequently mines various databases to provide their comprehensive inter-relation (e.g., interaction, expression, etc.). PALM-IST constructs protein interaction network and pathway information data relevant to the text search using multiple data mining tools and assembles them to create a meta-interaction network. It also analyzes scientific collaboration by extraction and creation of "co-authorship network," for a given search context. Hence, this useful combination of literature and data mining provided in PALM-IST can be used to extract novel protein-protein interaction (PPI), to generate meta-pathways and further to identify key crosstalk and bottleneck proteins. PALM-IST is available at www.hpppi.iicb.res.in/ctm.
Published on May 15, 2015
READ PUBLICATION →

Stimulus-dependent differences in signalling regulate epithelial-mesenchymal plasticity and change the effects of drugs in breast cancer cell lines.

Authors: Cursons J, Leuchowius KJ, Waltham M, Tomaskovic-Crook E, Foroutan M, Bracken CP, Redfern A, Crampin EJ, Street I, Davis MJ, Thompson EW

Abstract: INTRODUCTION: The normal process of epithelial mesenchymal transition (EMT) is subverted by carcinoma cells to facilitate metastatic spread. Cancer cells rarely undergo a full conversion to the mesenchymal phenotype, and instead adopt positions along the epithelial-mesenchymal axis, a propensity we refer to as epithelial mesenchymal plasticity (EMP). EMP is associated with increased risk of metastasis in breast cancer and consequent poor prognosis. Drivers towards the mesenchymal state in malignant cells include growth factor stimulation or exposure to hypoxic conditions. METHODS: We have examined EMP in two cell line models of breast cancer: the PMC42 system (PMC42-ET and PMC42-LA sublines) and MDA-MB-468 cells. Transition to a mesenchymal phenotype was induced across all three cell lines using epidermal growth factor (EGF) stimulation, and in MDA-MB-468 cells by hypoxia. We used RNA sequencing to identify gene expression changes that occur as cells transition to a more-mesenchymal phenotype, and identified the cell signalling pathways regulated across these experimental systems. We then used inhibitors to modulate signalling through these pathways, verifying the conclusions of our transcriptomic analysis. RESULTS: We found that EGF and hypoxia both drive MDA-MB-468 cells to phenotypically similar mesenchymal states. Comparing the transcriptional response to EGF and hypoxia, we have identified differences in the cellular signalling pathways that mediate, and are influenced by, EMT. Significant differences were observed for a number of important cellular signalling components previously implicated in EMT, such as HBEGF and VEGFA. We have shown that EGF- and hypoxia-induced transitions respond differently to treatment with chemical inhibitors (presented individually and in combinations) in these breast cancer cells. Unexpectedly, MDA-MB-468 cells grown under hypoxic growth conditions became even more mesenchymal following exposure to certain kinase inhibitors that prevent growth-factor induced EMT, including the mTOR inhibitor everolimus and the AKT1/2/3 inhibitor AZD5363. CONCLUSIONS: While resulting in a common phenotype, EGF and hypoxia induced subtly different signalling systems in breast cancer cells. Our findings have important implications for the use of kinase inhibitor-based therapeutic interventions in breast cancers, where these heterogeneous signalling landscapes will influence the therapeutic response.
Published on May 11, 2015
READ PUBLICATION →

Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations.

Authors: Perez-Lopez AR, Szalay KZ, Turei D, Modos D, Lenti K, Korcsmaros T, Csermely P

Abstract: Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.