Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in March 2015
READ PUBLICATION →

PhIN: A Protein Pharmacology Interaction Network Database.

Authors: Wang Z, Li J, Dang R, Liang L, Lin J

Abstract: Network pharmacology is a new and hot concept in drug discovery for its ability to investigate the complexity of polypharmacology, and becomes more and more important in drug development. Here we report a protein pharmacology interaction network database (PhIN), aiming to assist multitarget drug discovery by providing comprehensive and flexible network pharmacology analysis. Overall, PhIN contains 1,126,060 target-target interaction pairs in terms of shared compounds and 3,428,020 pairs in terms of shared scaffolds, which involve 12,419,700 activity data, 9,414 targets, 314 viral targets, 652 pathways, 1,359,400 compounds, and 309,556 scaffolds. Using PhIN, users can obtain interacting target networks within or across human pathways, between human and virus, by defining the number of shared compounds or scaffolds under an activity cutoff. We expect PhIN to be a useful tool for multitarget drug development. PhIN is freely available at http://cadd.pharmacy.nankai.edu.cn/phin/.
Published in March 2015
READ PUBLICATION →

Drugs that reverse disease transcriptomic signatures are more effective in a mouse model of dyslipidemia.

Authors: Wagner A, Cohen N, Kelder T, Amit U, Liebman E, Steinberg DM, Radonjic M, Ruppin E

Abstract: High-throughput omics have proven invaluable in studying human disease, and yet day-to-day clinical practice still relies on physiological, non-omic markers. The metabolic syndrome, for example, is diagnosed and monitored by blood and urine indices such as blood cholesterol levels. Nevertheless, the association between the molecular and the physiological manifestations of the disease, especially in response to treatment, has not been investigated in a systematic manner. To this end, we studied a mouse model of diet-induced dyslipidemia and atherosclerosis that was subject to various drug treatments relevant to the disease in question. Both physiological data and gene expression data (from the liver and white adipose) were analyzed and compared. We find that treatments that restore gene expression patterns to their norm are associated with the successful restoration of physiological markers to their baselines. This holds in a tissue-specific manner-treatments that reverse the transcriptomic signatures of the disease in a particular tissue are associated with positive physiological effects in that tissue. Further, treatments that introduce large non-restorative gene expression alterations are associated with unfavorable physiological outcomes. These results provide a sound basis to in silico methods that rely on omic metrics for drug repurposing and drug discovery by searching for compounds that reverse a disease's omic signatures. Moreover, they highlight the need to develop drugs that restore the global cellular state to its healthy norm rather than rectify particular disease phenotypes.
Published in March 2015
READ PUBLICATION →

Prioritizing therapeutics for lung cancer: an integrative meta-analysis of cancer gene signatures and chemogenomic data.

Authors: Fortney K, Griesman J, Kotlyar M, Pastrello C, Angeli M, Sound-Tsao M, Jurisica I

Abstract: Repurposing FDA-approved drugs with the aid of gene signatures of disease can accelerate the development of new therapeutics. A major challenge to developing reliable drug predictions is heterogeneity. Different gene signatures of the same disease or drug treatment often show poor overlap across studies, as a consequence of both biological and technical variability, and this can affect the quality and reproducibility of computational drug predictions. Existing algorithms for signature-based drug repurposing use only individual signatures as input. But for many diseases, there are dozens of signatures in the public domain. Methods that exploit all available transcriptional knowledge on a disease should produce improved drug predictions. Here, we adapt an established meta-analysis framework to address the problem of drug repurposing using an ensemble of disease signatures. Our computational pipeline takes as input a collection of disease signatures, and outputs a list of drugs predicted to consistently reverse pathological gene changes. We apply our method to conduct the largest and most systematic repurposing study on lung cancer transcriptomes, using 21 signatures. We show that scaling up transcriptional knowledge significantly increases the reproducibility of top drug hits, from 44% to 78%. We extensively characterize drug hits in silico, demonstrating that they slow growth significantly in nine lung cancer cell lines from the NCI-60 collection, and identify CALM1 and PLA2G4A as promising drug targets for lung cancer. Our meta-analysis pipeline is general, and applicable to any disease context; it can be applied to improve the results of signature-based drug repurposing by leveraging the large number of disease signatures in the public domain.
Published in March 2015
READ PUBLICATION →

Ligand-target prediction by structural network biology using nAnnoLyze.

Authors: Martinez-Jimenez F, Marti-Renom MA

Abstract: Target identification is essential for drug design, drug-drug interaction prediction, dosage adjustment and side effect anticipation. Specifically, the knowledge of structural details is essential for understanding the mode of action of a compound on a target protein. Here, we present nAnnoLyze, a method for target identification that relies on the hypothesis that structurally similar binding sites bind similar ligands. nAnnoLyze integrates structural information into a bipartite network of interactions and similarities to predict structurally detailed compound-protein interactions at proteome scale. The method was benchmarked on a dataset of 6,282 pairs of known interacting ligand-target pairs reaching a 0.96 of area under the Receiver Operating Characteristic curve (AUC) when using the drug names as an input feature for the classifier, and a 0.70 of AUC for "anonymous" compounds or compounds not present in the training set. nAnnoLyze resulted in higher accuracies than its predecessor, AnnoLyze. We applied the method to predict interactions for all the compounds in the DrugBank database with each human protein structure and provide examples of target identification for known drugs against human diseases. The accuracy and applicability of our method to any compound indicate that a comparative docking approach such as nAnnoLyze enables large-scale annotation and analysis of compound-protein interactions and thus may benefit drug development.
Published on March 30, 2015
READ PUBLICATION →

Uncovering pharmacological mechanisms of Wu-tou decoction acting on rheumatoid arthritis through systems approaches: drug-target prediction, network analysis and experimental validation.

Authors: Zhang Y, Bai M, Zhang B, Liu C, Guo Q, Sun Y, Wang D, Wang C, Jiang Y, Lin N, Li S

Abstract: Wu-tou decoction (WTD) has been extensively used for the treatment of rheumatoid arthritis (RA). Due to lack of appropriate methods, pharmacological mechanisms of WTD acting on RA have not been fully elucidated. In this study, a list of putative targets for compositive compounds containing in WTD were predicted by drugCIPHER-CS. Then, the interaction network of the putative targets of WTD and known RA-related targets was constructed and hub nodes were identified. After constructing the interaction network of hubs, four topological features of each hub, including degree, node betweenness, closeness and k-coreness, were calculated and 79 major hubs were identified as candidate targets of WTD, which were implicated into the imbalance of the nervous, endocrine and immune (NEI) systems, leading to the main pathological changes during the RA progression. Further experimental validation also demonstrated the preventive effects of WTD on inflammation and joint destruction in collagen-induced arthritis (CIA) rats and its regulatory effects on candidate targets both in vitro and in vivo systems. In conclusion, we performed an integrative analysis to offer the convincing evidence that WTD may attenuate RA partially by restoring the balance of NEI system and subsequently reversing the pathological events during RA progression.
Published on March 20, 2015
READ PUBLICATION →

Inferring cuisine--drug interactions using the linked data approach.

Authors: Jovanovik M, Bogojeska A, Trajanov D, Kocarev L

Abstract: Food - drug interactions are well studied, however much less is known about cuisine - drug interactions. Non-native cuisines are becoming increasingly more popular as they are available in (almost) all regions in the world. Here we address the problem of how known negative food - drug interactions are spread in different cuisines. We show that different drug categories have different distribution of the negative effects in different parts of the world. The effects certain ingredients have on different drug categories and in different cuisines are also analyzed. This analysis is aimed towards stressing out the importance of cuisine - drug interactions for patients which are being administered drugs with known negative food interactions. A patient being under a treatment with one such drug should be advised not only about the possible negative food - drug interactions, but also about the cuisines that could be avoided from the patient's diet.
Published on March 18, 2015
READ PUBLICATION →

Rheumatoid arthritis response to treatment across IgG1 allotype - anti-TNF incompatibility: a case-only study.

Authors: Montes A, Perez-Pampin E, Navarro-Sarabia F, Moreira V, de la Serna AR, Magallares B, Vasilopoulos Y, Sarafidou T, Fernandez-Nebro A, Ordonez Mdel C, Narvaez J, Canete JD, Marquez A, Pascual-Salcedo D, Joven B, Carreira P, Moreno-Ramos MJ, Caliz R, Ferrer MA, Garcia-Portales R, Blanco FJ, Magro C, Raya E, Valor L, Alegre-Sancho JJ, Balsa A, Martin J, Plant D, Isaacs J, Morgan AW, Barton A, Wilson AG, Gomez-Reino JJ, Gonzalez A

Abstract: INTRODUCTION: We have hypothesized that incompatibility between the G1m genotype of the patient and the G1m1 and G1m17 allotypes carried by infliximab (INX) and adalimumab (ADM) could decrease the efficacy of these anti-tumor necrosis factor (anti-TNF) antibodies in the treatment of rheumatoid arthritis (RA). METHODS: The G1m genotypes were analyzed in three collections of patients with RA totaling 1037 subjects. The first, used for discovery, comprised 215 Spanish patients. The second and third were successively used for replication. They included 429 British and Greek patients and 393 Spanish and British patients, respectively. Two outcomes were considered: change in the Disease Activity Score in 28 joint (DeltaDAS28) and the European League Against Rheumatism (EULAR) response criteria. RESULTS: An association between less response to INX and incompatibility of the G1m1,17 allotype was found in the discovery collection at 6 months of treatment (P = 0.03). This association was confirmed in the replications (P = 0.02 and 0.08, respectively) leading to a global association (P = 0.001) that involved a mean difference in DeltaDAS28 of 0.4 units between compatible and incompatible patients (2.3 +/- 1.5 in compatible patients vs. 1.9 +/- 1.5 in incompatible patients) and an increase in responders and decrease in non-responders according to the EULAR criteria (P = 0.03). A similar association was suggested for patients treated with ADM in the discovery collection, but it was not supported by replication. CONCLUSIONS: Our results suggest that G1m1,17 allotypes are associated with response to INX and could aid improved therapeutic targeting in RA.
Published on March 12, 2015
READ PUBLICATION →

Whole genome sequencing of an ethnic Pathan (Pakhtun) from the north-west of Pakistan.

Authors: Ilyas M, Kim JS, Cooper J, Shin YA, Kim HM, Cho YS, Hwang S, Kim H, Moon J, Chung O, Jun J, Rastogi A, Song S, Ko J, Manica A, Rahman Z, Husnain T, Bhak J

Abstract: BACKGROUND: Pakistan covers a key geographic area in human history, being both part of the Indus River region that acted as one of the cradles of civilization and as a link between Western Eurasia and Eastern Asia. This region is inhabited by a number of distinct ethnic groups, the largest being the Punjabi, Pathan (Pakhtuns), Sindhi, and Baloch. RESULTS: We analyzed the first ethnic male Pathan genome by sequencing it to 29.7-fold coverage using the Illumina HiSeq2000 platform. A total of 3.8 million single nucleotide variations (SNVs) and 0.5 million small indels were identified by comparing with the human reference genome. Among the SNVs, 129,441 were novel, and 10,315 nonsynonymous SNVs were found in 5,344 genes. SNVs were annotated for health consequences and high risk diseases, as well as possible influences on drug efficacy. We confirmed that the Pathan genome presented here is representative of this ethnic group by comparing it to a panel of Central Asians from the HGDP-CEPH panels typed for ~650 k SNPs. The mtDNA (H2) and Y haplogroup (L1) of this individual were also typical of his geographic region of origin. Finally, we reconstruct the demographic history by PSMC, which highlights a recent increase in effective population size compatible with admixture between European and Asian lineages expected in this geographic region. CONCLUSIONS: We present a whole-genome sequence and analyses of an ethnic Pathan from the north-west province of Pakistan. It is a useful resource to understand genetic variation and human migration across the whole Asian continent.
Published on March 12, 2015
READ PUBLICATION →

A binding mode hypothesis of tiagabine confirms liothyronine effect on gamma-aminobutyric acid transporter 1 (GAT1).

Authors: Jurik A, Zdrazil B, Holy M, Stockner T, Sitte HH, Ecker GF

Abstract: Elevating GABA levels in the synaptic cleft by inhibiting its reuptake carrier GAT1 is an established approach for the treatment of CNS disorders like epilepsy. With the increasing availability of crystal structures of transmembrane transporters, structure-based approaches to elucidate the molecular basis of ligand-transporter interaction also become feasible. Experimental data guided docking of derivatives of the GAT1 inhibitor tiagabine into a protein homology model of GAT1 allowed derivation of a common binding mode for this class of inhibitors that is able to account for the distinct structure-activity relationship pattern of the data set. Translating essential binding features into a pharmacophore model followed by in silico screening of the DrugBank identified liothyronine as a drug potentially exerting a similar effect on GAT1. Experimental testing further confirmed the GAT1 inhibiting properties of this thyroid hormone.
Published on March 3, 2015
READ PUBLICATION →

Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders.

Authors: Bjorkegren JLM, Kovacic JC, Dudley JT, Schadt EE

Abstract: Genome-wide association studies (GWAS) have been extensively used to study common complex diseases such as coronary artery disease (CAD), revealing 153 suggestive CAD loci, of which at least 46 have been validated as having genome-wide significance. However, these loci collectively explain <10% of the genetic variance in CAD. Thus, we must address the key question of what factors constitute the remaining 90% of CAD heritability. We review possible limitations of GWAS, and contextually consider some candidate CAD loci identified by this method. Looking ahead, we propose systems genetics as a complementary approach to unlocking the CAD heritability and etiology. Systems genetics builds network models of relevant molecular processes by combining genetic and genomic datasets to ultimately identify key "drivers" of disease. By leveraging systems-based genetic approaches, we can help reveal the full genetic basis of common complex disorders, enabling novel diagnostic and therapeutic opportunities.