Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on January 22, 2021
READ PUBLICATION →

Integrative computational approach identifies drug targets in CD4(+) T-cell-mediated immune disorders.

Authors: Puniya BL, Amin R, Lichter B, Moore R, Ciurej A, Bennett SJ, Shah AR, Barberis M, Helikar T

Abstract: CD4(+) T cells provide adaptive immunity against pathogens and abnormal cells, and they are also associated with various immune-related diseases. CD4(+) T cells' metabolism is dysregulated in these pathologies and represents an opportunity for drug discovery and development. Genome-scale metabolic modeling offers an opportunity to accelerate drug discovery by providing high-quality information about possible target space in the context of a modeled disease. Here, we develop genome-scale models of naive, Th1, Th2, and Th17 CD4(+) T-cell subtypes to map metabolic perturbations in rheumatoid arthritis, multiple sclerosis, and primary biliary cholangitis. We subjected these models to in silico simulations for drug response analysis of existing FDA-approved drugs and compounds. Integration of disease-specific differentially expressed genes with altered reactions in response to metabolic perturbations identified 68 drug targets for the three autoimmune diseases. In vitro experimental validation, together with literature-based evidence, showed that modulation of fifty percent of identified drug targets suppressed CD4(+) T cells, further increasing their potential impact as therapeutic interventions. Our approach can be generalized in the context of other diseases, and the metabolic models can be further used to dissect CD4(+) T-cell metabolism.
Published on January 22, 2021
READ PUBLICATION →

Cognitive analysis of metabolomics data for systems biology.

Authors: Majumder EL, Billings EM, Benton HP, Martin RL, Palermo A, Guijas C, Rinschen MM, Domingo-Almenara X, Montenegro-Burke JR, Tagtow BA, Plumb RS, Siuzdak G

Abstract: Cognitive computing is revolutionizing the way big data are processed and integrated, with artificial intelligence (AI) natural language processing (NLP) platforms helping researchers to efficiently search and digest the vast scientific literature. Most available platforms have been developed for biomedical researchers, but new NLP tools are emerging for biologists in other fields and an important example is metabolomics. NLP provides literature-based contextualization of metabolic features that decreases the time and expert-level subject knowledge required during the prioritization, identification and interpretation steps in the metabolomics data analysis pipeline. Here, we describe and demonstrate four workflows that combine metabolomics data with NLP-based literature searches of scientific databases to aid in the analysis of metabolomics data and their biological interpretation. The four procedures can be used in isolation or consecutively, depending on the research questions. The first, used for initial metabolite annotation and prioritization, creates a list of metabolites that would be interesting for follow-up. The second workflow finds literature evidence of the activity of metabolites and metabolic pathways in governing the biological condition on a systems biology level. The third is used to identify candidate biomarkers, and the fourth looks for metabolic conditions or drug-repurposing targets that the two diseases have in common. The protocol can take 1-4 h or more to complete, depending on the processing time of the various software used.
Published on January 21, 2021
READ PUBLICATION →

In-silico network-based analysis of drugs used against COVID-19: Human well-being study.

Authors: Attique Z, Ali A, Hamza M, Al-Ghanim KA, Mehmood A, Khan S, Ahmed Z, Al-Mulhm N, Rizwan M, Munir A, Al-Suliman E, Farooq M, F AM, Mahboob S

Abstract: Introduction: Researchers worldwide with great endeavor searching and repurpose drugs might be potentially useful in fighting newly emerged coronavirus. These drugs show inhibition but also show side effects and complications too. On December 27, 2020, 80,926,235 cases have been reported worldwide. Specifically, in Pakistan, 471,335 has been reported with inconsiderable deaths. Problem statement: Identification of COVID-19 drugs pathway through drug-gene and gene-gene interaction to find out the most important genes involved in the pathway to deal with the actual cause of side effects beyond the beneficent effects of the drugs. Methodology: The medicines used to treat COVID-19 are retrieved from the Drug Bank. The drug-gene interaction was performed using the Drug Gene Interaction Database to check the relation between the genes and the drugs. The networks of genes are developed by Gene MANIA, while Cytoscape is used to check the active functional association of the targeted gene. The developed systems cross-validated using the EnrichNet tool and identify drug genes' concerned pathways using Reactome and STRING. Results: Five drugs Azithromycin, Bevacizumab, CQ, HCQ, and Lopinavir, are retrieved. The drug-gene interaction shows several genes that are targeted by the drug. Gene MANIA interaction network shows the functional association of the genes like co-expression, physical interaction, predicted, genetic interaction, co-localization, and shared protein domains. Conclusion: Our study suggests the pathways for each drug in which targeted genes and medicines play a crucial role, which will help experts in-vitro overcome and deal with the side effects of these drugs, as we find out the in-silico gene analysis for the COVID-19 drugs.
Published on January 21, 2021
READ PUBLICATION →

An empirical meta-analysis of the life sciences linked open data on the web.

Authors: Kamdar MR, Musen MA

Abstract: While the biomedical community has published several "open data" sources in the last decade, most researchers still endure severe logistical and technical challenges to discover, query, and integrate heterogeneous data and knowledge from multiple sources. To tackle these challenges, the community has experimented with Semantic Web and linked data technologies to create the Life Sciences Linked Open Data (LSLOD) cloud. In this paper, we extract schemas from more than 80 biomedical linked open data sources into an LSLOD schema graph and conduct an empirical meta-analysis to evaluate the extent of semantic heterogeneity across the LSLOD cloud. We observe that several LSLOD sources exist as stand-alone data sources that are not inter-linked with other sources, use unpublished schemas with minimal reuse or mappings, and have elements that are not useful for data integration from a biomedical perspective. We envision that the LSLOD schema graph and the findings from this research will aid researchers who wish to query and integrate data and knowledge from multiple biomedical sources simultaneously on the Web.
Published on January 20, 2021
READ PUBLICATION →

Cellinker: a platform of ligand-receptor interactions for intercellular communication analysis.

Authors: Zhang Y, Liu T, Wang J, Zou B, Li L, Yao L, Chen K, Ning L, Wu B, Zhao X, Wang D

Abstract: MOTIVATION: Ligand-receptor (L-R) interactions mediate cell adhesion, recognition and communication and play essential roles in physiological and pathological signaling. With the rapid development of single-cell RNA sequencing (scRNA-seq) technologies, systematically decoding the intercellular communication network involving L-R interactions has become a focus of research. Therefore, construction of a comprehensive, high-confidence and well-organized resource to retrieve L-R interactions in order to study the functional effects of cell-cell communications would be of great value. RESULTS: In this study, we developed Cellinker, a manually curated resource of literature-supported L-R interactions that play roles in cell-cell communication. We aimed to provide a useful platform for studies on cell-cell communication mediated by L-R interactions. The current version of Cellinker documents over 3,700 human and 3,200 mouse L-R protein-protein interactions (PPIs) and embeds a practical and convenient webserver with which researchers can decode intercellular communications based on scRNA-seq data. And over 400 endogenous small molecule (sMOL) related L-R interactions were collected as well. Moreover, to help with research on coronavirus (CoV) infection, Cellinker collects information on 16 L-R PPIs involved in CoV-human interactions (including 12 L-R PPIs involved in SARS-CoV-2 infection). In summary, Cellinker provides a user-friendly interface for querying, browsing and visualizing L-R interactions as well as a practical and convenient web tool for inferring intercellular communications based on scRNA-seq data. We believe this platform could promote intercellular communication research and accelerate the development of related algorithms for scRNA-seq studies. AVAILABILITY: Cellinker is available at http://www.rna-society.org/cellinker/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Published on January 20, 2021
READ PUBLICATION →

Transcriptome network analyses in human coronavirus infections suggest a rational use of immunomodulatory drugs for COVID-19 therapy.

Authors: Wong HS, Guo CL, Lin GH, Lee KY, Okada Y, Chang WC

Abstract: The recent outbreak of coronavirus disease 2019 (COVID-19) by SARS-CoV-2 has led to uptodate 24.3 M cases and 0.8 M deaths. It is thus in urgent need to rationalize potential therapeutic targets against the progression of diseases. An effective, feasible way is to use the pre-existing DeltaORF6 mutant of SARS-CoV as a surrogate for SARS-CoV-2, since both lack the moiety responsible for interferon antagonistic effects. By analyzing temporal profiles of upregulated genes in DeltaORF6-infected Calu-3 cells, we prioritized 55 genes and 238 ligands to reposition currently available medications for COVID-19 therapy. Eight of them are already in clinical trials, including dexamethasone, ritonavir, baricitinib, tofacitinib, naproxen, budesonide, ciclesonide and formoterol. We also pinpointed 16 drug groups from the Anatomical Therapeutic Chemical classification system, with the potential to mitigate symptoms of SARS-CoV-2 infection and thus to be repositioned for COVID-19 therapy.
Published on January 20, 2021
READ PUBLICATION →

An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features.

Authors: An JY, Meng FR, Yan ZJ

Abstract: BACKGROUND: Prediction of novel Drug-Target interactions (DTIs) plays an important role in discovering new drug candidates and finding new proteins to target. In consideration of the time-consuming and expensive of experimental methods. Therefore, it is a challenging task that how to develop efficient computational approaches for the accurate predicting potential associations between drug and target. RESULTS: In the paper, we proposed a novel computational method called WELM-SURF based on drug fingerprints and protein evolutionary information for identifying DTIs. More specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up robot features (SURF) is employed to extract sequence key feature from PSSM. For drug fingerprints, the chemical structure of molecular substructure fingerprints was used to represent drug as feature vector. Take account of the advantage that the Weighted Extreme Learning Machine (WELM) has short training time, good generalization ability, and most importantly ability to efficiently execute classification by optimizing the loss function of weight matrix. Therefore, the WELM classifier is used to carry out classification based on extracted features for predicting DTIs. The performance of the WELM-SURF model was evaluated by experimental validations on enzyme, ion channel, GPCRs and nuclear receptor datasets by using fivefold cross-validation test. The WELM-SURF obtained average accuracies of 93.54, 90.58, 85.43 and 77.45% on enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also compared our performance with the Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM) on enzyme and ion channels dataset and other exiting methods on four datasets. By comparing with experimental results, the performance of WELM-SURF is significantly better than that of ELM, SVM and other previous methods in the domain. CONCLUSION: The results demonstrated that the proposed WELM-SURF model is competent for predicting DTIs with high accuracy and robustness. It is anticipated that the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics studies related to DTIs prediction.
Published on January 18, 2021
READ PUBLICATION →

Large-scale regulatory and signaling network assembly through linked open data.

Authors: Lefebvre M, Gaignard A, Folschette M, Bourdon J, Guziolowski C

Abstract: Huge efforts are currently underway to address the organization of biological knowledge through linked open databases. These databases can be automatically queried to reconstruct regulatory and signaling networks. However, assembling networks implies manual operations due to source-specific identification of biological entities and relationships, multiple life-science databases with redundant information and the difficulty of recovering logical flows in biological pathways. We propose a framework based on Semantic Web technologies to automate the reconstruction of large-scale regulatory and signaling networks in the context of tumor cells modeling and drug screening. The proposed tool is pyBRAvo (python Biological netwoRk Assembly), and here we have applied it to a dataset of 910 gene expression measurements issued from liver cancer patients. The tool is publicly available at https://github.com/pyBRAvo/pyBRAvo.
Published on January 18, 2021
READ PUBLICATION →

Machine learning approaches and databases for prediction of drug-target interaction: a survey paper.

Authors: Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K

Abstract: The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug-target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
Published on January 18, 2021
READ PUBLICATION →

Prediction and mechanistic analysis of drug-induced liver injury (DILI) based on chemical structure.

Authors: Liu A, Walter M, Wright P, Bartosik A, Dolciami D, Elbasir A, Yang H, Bender A

Abstract: BACKGROUND: Drug-induced liver injury (DILI) is a major safety concern characterized by a complex and diverse pathogenesis. In order to identify DILI early in drug development, a better understanding of the injury and models with better predictivity are urgently needed. One approach in this regard are in silico models which aim at predicting the risk of DILI based on the compound structure. However, these models do not yet show sufficient predictive performance or interpretability to be useful for decision making by themselves, the former partially stemming from the underlying problem of labeling the in vivo DILI risk of compounds in a meaningful way for generating machine learning models. RESULTS: As part of the Critical Assessment of Massive Data Analysis (CAMDA) "CMap Drug Safety Challenge" 2019 ( http://camda2019.bioinf.jku.at ), chemical structure-based models were generated using the binarized DILIrank annotations. Support Vector Machine (SVM) and Random Forest (RF) classifiers showed comparable performance to previously published models with a mean balanced accuracy over models generated using 5-fold LOCO-CV inside a 10-fold training scheme of 0.759 +/- 0.027 when predicting an external test set. In the models which used predicted protein targets as compound descriptors, we identified the most information-rich proteins which agreed with the mechanisms of action and toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs), one of the most important drug classes causing DILI, stress response via TP53 and biotransformation. In addition, we identified multiple proteins involved in xenobiotic metabolism which could be novel DILI-related off-targets, such as CLK1 and DYRK2. Moreover, we derived potential structural alerts for DILI with high precision, including furan and hydrazine derivatives; however, all derived alerts were present in approved drugs and were over specific indicating the need to consider quantitative variables such as dose. CONCLUSION: Using chemical structure-based descriptors such as structural fingerprints and predicted protein targets, DILI prediction models were built with a predictive performance comparable to previous literature. In addition, we derived insights on proteins and pathways statistically (and potentially causally) linked to DILI from these models and inferred new structural alerts related to this adverse endpoint.