Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on July 18, 2017
READ PUBLICATION →

RD-Metabolizer: an integrated and reaction types extensive approach to predict metabolic sites and metabolites of drug-like molecules.

Authors: Meng J, Li S, Liu X, Zheng M, Li H

Abstract: BACKGROUND: Experimental approaches for determining the metabolic properties of the drug candidates are usually expensive, time-consuming and labor intensive. There is a great deal of interest in developing computational methods to accurately and efficiently predict the metabolic decomposition of drug-like molecules, which can provide decisive support and guidance for experimentalists. RESULTS: Here, we developed an integrated, low false positive and reaction types extensive metabolism prediction approach called RD-Metabolizer (Reaction Database-based Metabolizer). RD-Metabolizer firstly employed the detailed reaction SMARTS patterns to encode different metabolism reaction types with the aim of covering larger chemical reaction space. 2D fingerprint similarity calculation model was built to calculate the metabolic probability of each site in a molecule. RDKit was utilized to act on pre-written reaction SMARTS patterns to correct the metabolic ranking of each site in a molecule generated by the 2D fingerprint similarity calculation model as well as generate corresponding structures of metabolites, thus helping to reduce the false positive metabolites. Two test sets were adopted to evaluate the performance of RD-Metabolizer in predicting SOMs and structures of metabolites. The results indicated that RD-Metabolizer was better than or at least as good as several widely used SOMs prediction methods. Besides, the number of false positive metabolites was obviously reduced compared with MetaPrint2D-React. CONCLUSIONS: The accuracy and efficiency of RD-Metabolizer was further illustrated by a metabolism prediction case of AZD9291, which is a mutant-selective EGFR inhibitor. RD-Metabolizer will serve as a useful toolkit for the early metabolic properties assessment of drug-like molecules at the preclinical stage of drug discovery. Graphical abstract A visual example of the metabolic site and the corresponding metabolite of Chloroquine predicted by RD-Metabolizer.
Published on July 18, 2017
READ PUBLICATION →

Exploring anti-malarial potential of FDA approved drugs: an in silico approach.

Authors: Ramakrishnan G, Chandra N, Srinivasan N

Abstract: BACKGROUND: The critically important issue on emergence of drug-resistant malarial parasites is compounded by cross resistance, where resistance to one drug confers resistance to other chemically similar drugs or those that share mode of action. This aspect requires discovery of new anti-malarial compounds or formulation of new combination therapy. The current study attempts to contribute towards accelerating anti-malarial drug development efforts, by exploring the potential of existing FDA-approved drugs to target proteins of Plasmodium falciparum. METHODS: Using comparative sequence and structure analyses, FDA-approved drugs, originally developed against other pathogens, were identified as potential repurpose-able candidates against P. falciparum. The rationale behind the undertaken approach is the likeliness of small molecules to bind to homologous targets. Such a study of evolutionary relationships between established targets and P. falciparum proteins aided in identification of approved drug candidates that can be explored for their anti-malarial potential. RESULTS: Seventy-one FDA-approved drugs were identified that could be repurposed against P. falciparum. A total of 89 potential targets were recognized, of which about 70 are known to participate in parasite housekeeping machinery, protein biosynthesis, metabolic pathways and cell growth and differentiation, which can be prioritized for chemotherapeutic interventions. An additional aspect of prioritization of predicted repurpose-able drugs has been explored on the basis of ability of the drugs to permeate cell membranes, i.e., lipophilicity, since the parasite resides within a parasitophorous vacuole, within the erythrocyte, during the blood stages of infection. Based on this consideration, 46 of 71 FDA-approved drugs have been identified as feasible repurpose-able candidates against P. falciparum, and form a first-line for laboratory investigations. At least five of the drugs identified in the current analysis correspond to existing antibacterial agents already under use as repurposed anti-malarial agents. CONCLUSIONS: The drug-target associations predicted, primarily by taking advantage of evolutionary information, provide a valuable resource of attractive and feasible candidate drugs that can be readily taken through further stages of anti-malarial drug development pipeline.
Published on July 12, 2017
READ PUBLICATION →

HDNetDB: A Molecular Interaction Database for Network-Oriented Investigations into Huntington's Disease.

Authors: Kalathur RKR, Pedro Pinto J, Sahoo B, Chaurasia G, Futschik ME

Abstract: Huntington's disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Although HD is monogenic, its molecular manifestation appears highly complex and involves multiple cellular processes. The recent application of high throughput platforms such as microarrays and mass-spectrometry has indicated multiple pathogenic routes. The massive data generated by these techniques together with the complexity of the pathogenesis, however, pose considerable challenges to researchers. Network-based methods can provide valuable tools to consolidate newly generated data with existing knowledge, and to decipher the interwoven molecular mechanisms underlying HD. To facilitate research on HD in a network-oriented manner, we have developed HDNetDB, a database that integrates molecular interactions with many HD-relevant datasets. It allows users to obtain, visualize and prioritize molecular interaction networks using HD-relevant gene expression, phenotypic and other types of data obtained from human samples or model organisms. We illustrated several HDNetDB functionalities through a case study and identified proteins that constitute potential cross-talk between HD and the unfolded protein response (UPR). HDNetDB is publicly accessible at http://hdnetdb.sysbiolab.eu .
Published on July 11, 2017
READ PUBLICATION →

Identifying prognostic signature in ovarian cancer using DirGenerank.

Authors: Wang JY, Chen LL, Zhou XH

Abstract: Identifying the prognostic genes in cancer is essential not only for the treatment of cancer patients, but also for drug discovery. However, it's still a big challenge to select the prognostic genes that can distinguish the risk of cancer patients across various data sets because of tumor heterogeneity. In this situation, the selected genes whose expression levels are statistically related to prognostic risks may be passengers. In this paper, based on gene expression data and prognostic data of ovarian cancer patients, we used conditional mutual information to construct gene dependency network in which the nodes (genes) with more out-degrees have more chances to be the modulators of cancer prognosis. After that, we proposed DirGenerank (Generank in direct netowrk) algorithm, which concerns both the gene dependency network and genes' correlations to prognostic risks, to identify the gene signature that can predict the prognostic risks of ovarian cancer patients. Using ovarian cancer data set from TCGA (The Cancer Genome Atlas) as training data set, 40 genes with the highest importance were selected as prognostic signature. Survival analysis of these patients divided by the prognostic signature in testing data set and four independent data sets showed the signature can distinguish the prognostic risks of cancer patients significantly. Enrichment analysis of the signature with curated cancer genes and the drugs selected by CMAP showed the genes in the signature may be drug targets for therapy. In summary, we have proposed a useful pipeline to identify prognostic genes of cancer patients.
Published on July 11, 2017
READ PUBLICATION →

Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis.

Authors: Zhitomirsky B, Assaraf YG

Abstract: We have recently shown that hydrophobic weak base anticancer drugs are highly sequestered in acidic lysosomes, inducing TFEB-mediated lysosomal biogenesis and markedly increased lysosome numbers per cell. This enhanced lysosomal sequestration of chemotherapeutics, away from their intracellular targets, provoked cancer multidrug resistance. However, little is known regarding the fate of lysosome-sequestered drugs. While we suggested that sequestered drugs might be expelled from cancer cells via lysosomal exocytosis, no actual drug-induced lysosomal exocytosis was demonstrated. By following the subcellular localization of lysosomes during exposure to lysosomotropic chemotherapeutics, we herein demonstrate that lysosomal drug accumulation results in translocation of lysosomes from the perinuclear zone towards the plasma membrane via movement on microtubule tracks. Furthermore, following translocation to the plasma membrane in drug-treated cells, lysosomes fused with the plasma membrane and released their cargo to the extracellular milieu, as also evidenced by increased levels of the lysosomal enzyme cathepsin D in the extracellular milieu. These findings suggest that lysosomal exocytosis of chemotherapeutic drug-loaded lysosomes is a crucial component of lysosome-mediated cancer multidrug resistance. We further argue that drug-induced lysosomal exocytosis bears important implications on tumor progression, as several lysosomal enzymes were found to play a key role in tumor cell invasion, angiogenesis and metastasis.
Published on July 5, 2017
READ PUBLICATION →

Prediction of Drug-Target Interaction Networks from the Integration of Protein Sequences and Drug Chemical Structures.

Authors: Meng FR, You ZH, Chen X, Zhou Y, An JY

Abstract: Knowledge of drug-target interaction (DTI) plays an important role in discovering new drug candidates. Unfortunately, there are unavoidable shortcomings; including the time-consuming and expensive nature of the experimental method to predict DTI. Therefore, it motivates us to develop an effective computational method to predict DTI based on protein sequence. In the paper, we proposed a novel computational approach based on protein sequence, namely PDTPS (Predicting Drug Targets with Protein Sequence) to predict DTI. The PDTPS method combines Bi-gram probabilities (BIGP), Position Specific Scoring Matrix (PSSM), and Principal Component Analysis (PCA) with Relevance Vector Machine (RVM). In order to evaluate the prediction capacity of the PDTPS, the experiment was carried out on enzyme, ion channel, GPCR, and nuclear receptor datasets by using five-fold cross-validation tests. The proposed PDTPS method achieved average accuracy of 97.73%, 93.12%, 86.78%, and 87.78% on enzyme, ion channel, GPCR and nuclear receptor datasets, respectively. The experimental results showed that our method has good prediction performance. Furthermore, in order to further evaluate the prediction performance of the proposed PDTPS method, we compared it with the state-of-the-art support vector machine (SVM) classifier on enzyme and ion channel datasets, and other exiting methods on four datasets. The promising comparison results further demonstrate that the efficiency and robust of the proposed PDTPS method. This makes it a useful tool and suitable for predicting DTI, as well as other bioinformatics tasks.
Published on July 3, 2017
READ PUBLICATION →

DES-ncRNA: A knowledgebase for exploring information about human micro and long noncoding RNAs based on literature-mining.

Authors: Salhi A, Essack M, Alam T, Bajic VP, Ma L, Radovanovic A, Marchand B, Schmeier S, Zhang Z, Bajic VB

Abstract: Noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long ncRNAs (lncRNAs), are important players in diseases and emerge as novel drug targets. Thus, unraveling the relationships between ncRNAs and other biomedical entities in cells are critical for better understanding ncRNA roles that may eventually help develop their use in medicine. To support ncRNA research and facilitate retrieval of relevant information regarding miRNAs and lncRNAs from the plethora of published ncRNA-related research, we developed DES-ncRNA ( www.cbrc.kaust.edu.sa/des_ncrna ). DES-ncRNA is a knowledgebase containing text- and data-mined information from public scientific literature and other public resources. Exploration of mined information is enabled through terms and pairs of terms from 19 topic-specific dictionaries including, for example, antibiotics, toxins, drugs, enzymes, mutations, pathways, human genes and proteins, drug indications and side effects, mutations, diseases, etc. DES-ncRNA contains approximately 878,000 associations of terms from these dictionaries of which 36,222 (5,373) are with regards to miRNAs (lncRNAs). We provide several ways to explore information regarding ncRNAs to users including controlled generation of association networks as well as hypotheses generation. We show an example how DES-ncRNA can aid research on Alzheimer disease and suggest potential therapeutic role for Fasudil. DES-ncRNA is a powerful tool that can be used on its own or as a complement to the existing resources, to support research in human ncRNA. To our knowledge, this is the only knowledgebase dedicated to human miRNAs and lncRNAs derived primarily through literature-mining enabling exploration of a broad spectrum of associated biomedical entities, not paralleled by any other resource.
Published on July 3, 2017
READ PUBLICATION →

mTCTScan: a comprehensive platform for annotation and prioritization of mutations affecting drug sensitivity in cancers.

Authors: Li MJ, Yao H, Huang D, Liu H, Liu Z, Xu H, Qin Y, Prinz J, Xia W, Wang P, Yan B, Tran NL, Kocher JP, Sham PC, Wang J

Abstract: Cancer therapies have experienced rapid progress in recent years, with a number of novel small-molecule kinase inhibitors and monoclonal antibodies now being widely used to treat various types of human cancers. During cancer treatments, mutations can have important effects on drug sensitivity. However, the relationship between tumor genomic profiles and the effectiveness of cancer drugs remains elusive. We introduce Mutation To Cancer Therapy Scan (mTCTScan) web server (http://jjwanglab.org/mTCTScan) that can systematically analyze mutations affecting cancer drug sensitivity based on individual genomic profiles. The platform was developed by leveraging the latest knowledge on mutation-cancer drug sensitivity associations and the results from large-scale chemical screening using human cancer cell lines. Using an evidence-based scoring scheme based on current integrative evidences, mTCTScan is able to prioritize mutations according to their associations with cancer drugs and preclinical compounds. It can also show related drugs/compounds with sensitivity classification by considering the context of the entire genomic profile. In addition, mTCTScan incorporates comprehensive filtering functions and cancer-related annotations to better interpret mutation effects and their association with cancer drugs. This platform will greatly benefit both researchers and clinicians for interrogating mechanisms of mutation-dependent drug response, which will have a significant impact on cancer precision medicine.
Published on July 3, 2017
READ PUBLICATION →

PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database.

Authors: Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, Lai L, Pei J, Li H

Abstract: The PharmMapper online tool is a web server for potential drug target identification by reversed pharmacophore matching the query compound against an in-house pharmacophore model database. The original version of PharmMapper includes more than 7000 target pharmacophores derived from complex crystal structures with corresponding protein target annotations. In this article, we present a new version of the PharmMapper web server, of which the backend pharmacophore database is six times larger than the earlier one, with a total of 23 236 proteins covering 16 159 druggable pharmacophore models and 51 431 ligandable pharmacophore models. The expanded target data cover 450 indications and 4800 molecular functions compared to 110 indications and 349 molecular functions in our last update. In addition, the new web server is united with the statistically meaningful ranking of the identified drug targets, which is achieved through the use of standard scores. It also features an improved user interface. The proposed web server is freely available at http://lilab.ecust.edu.cn/pharmmapper/.
Published on July 3, 2017
READ PUBLICATION →

WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit.

Authors: Wang J, Vasaikar S, Shi Z, Greer M, Zhang B

Abstract: Functional enrichment analysis has played a key role in the biological interpretation of high-throughput omics data. As a long-standing and widely used web application for functional enrichment analysis, WebGestalt has been constantly updated to satisfy the needs of biologists from different research areas. WebGestalt 2017 supports 12 organisms, 324 gene identifiers from various databases and technology platforms, and 150 937 functional categories from public databases and computational analyses. Omics data with gene identifiers not supported by WebGestalt and functional categories not included in the WebGestalt database can also be uploaded for enrichment analysis. In addition to the Over-Representation Analysis in the previous versions, Gene Set Enrichment Analysis and Network Topology-based Analysis have been added to WebGestalt 2017, providing complementary approaches to the interpretation of high-throughput omics data. The new user-friendly output interface and the GOView tool allow interactive and efficient exploration and comparison of enrichment results. Thus, WebGestalt 2017 enables more comprehensive, powerful, flexible and interactive functional enrichment analysis. It is freely available at http://www.webgestalt.org.