Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on May 15, 2017
READ PUBLICATION →

Concentration-Dependent Antagonism and Culture Conversion in Pulmonary Tuberculosis.

Authors: Rockwood N, Pasipanodya JG, Denti P, Sirgel F, Lesosky M, Gumbo T, Meintjes G, McIlleron H, Wilkinson RJ

Abstract: Background: There is scant evidence to support target drug exposures for optimal tuberculosis outcomes. We therefore assessed whether pharmacokinetic/pharmacodynamic (PK/PD) parameters could predict 2-month culture conversion. Methods: One hundred patients with pulmonary tuberculosis (65% human immunodeficiency virus coinfected) were intensively sampled to determine rifampicin, isoniazid, and pyrazinamide plasma concentrations after 7-8 weeks of therapy, and PK parameters determined using nonlinear mixed-effects models. Detailed clinical data and sputum for culture were collected at baseline, 2 months, and 5-6 months. Minimum inhibitory concentrations (MICs) were determined on baseline isolates. Multivariate logistic regression and the assumption-free multivariate adaptive regression splines (MARS) were used to identify clinical and PK/PD predictors of 2-month culture conversion. Potential PK/PD predictors included 0- to 24-hour area under the curve (AUC0-24), maximum concentration (Cmax), AUC0-24/MIC, Cmax/MIC, and percentage of time that concentrations persisted above the MIC (%TMIC). Results: Twenty-six percent of patients had Cmax of rifampicin <8 mg/L, pyrazinamide <35 mg/L, and isoniazid <3 mg/L. No relationship was found between PK exposures and 2-month culture conversion using multivariate logistic regression after adjusting for MIC. However, MARS identified negative interactions between isoniazid Cmax and rifampicin Cmax/MIC ratio on 2-month culture conversion. If isoniazid Cmax was <4.6 mg/L and rifampicin Cmax/MIC <28, the isoniazid concentration had an antagonistic effect on culture conversion. For patients with isoniazid Cmax >4.6 mg/L, higher isoniazid exposures were associated with improved rates of culture conversion. Conclusions: PK/PD analyses using MARS identified isoniazid Cmax and rifampicin Cmax/MIC thresholds below which there is concentration-dependent antagonism that reduces 2-month sputum culture conversion.
Published on May 4, 2017
READ PUBLICATION →

ChemSAR: an online pipelining platform for molecular SAR modeling.

Authors: Dong J, Yao ZJ, Zhu MF, Wang NN, Lu B, Chen AF, Lu AP, Miao H, Zeng WB, Cao DS

Abstract: BACKGROUND: In recent years, predictive models based on machine learning techniques have proven to be feasible and effective in drug discovery. However, to develop such a model, researchers usually have to combine multiple tools and undergo several different steps (e.g., RDKit or ChemoPy package for molecular descriptor calculation, ChemAxon Standardizer for structure preprocessing, scikit-learn package for model building, and ggplot2 package for statistical analysis and visualization, etc.). In addition, it may require strong programming skills to accomplish these jobs, which poses severe challenges for users without advanced training in computer programming. Therefore, an online pipelining platform that integrates a number of selected tools is a valuable and efficient solution that can meet the needs of related researchers. RESULTS: This work presents a web-based pipelining platform, called ChemSAR, for generating SAR classification models of small molecules. The capabilities of ChemSAR include the validation and standardization of chemical structure representation, the computation of 783 1D/2D molecular descriptors and ten types of widely-used fingerprints for small molecules, the filtering methods for feature selection, the generation of predictive models via a step-by-step job submission process, model interpretation in terms of feature importance and tree visualization, as well as a helpful report generation system. The results can be visualized as high-quality plots and downloaded as local files. CONCLUSION: ChemSAR provides an integrated web-based platform for generating SAR classification models that will benefit cheminformatics and other biomedical users. It is freely available at: http://chemsar.scbdd.com . Graphical abstract .
Published on May 3, 2017
READ PUBLICATION →

Palladium Catalyzed Asymmetric Three-Component Coupling of Boronic Esters, Indoles, and Allylic Acetates.

Authors: Panda S, Ready JM

Abstract: Boronic esters react with 2-lithiated indoles to form boronate intermediates. The boronate reacts with allylic acetates in the presence of (BINAP)Pd catalysts to allylate C3 concurrent with alkyl migration from B to C2 of the indole. Overall, the process is a three-component coupling that joins an allylic acetate, and indole and an organo-B(pin) species to provide substituted indoles and indolines with high enantio-, regio-, and diastereoselectivity.
Published on May 1, 2017
READ PUBLICATION →

MeSHDD: Literature-based drug-drug similarity for drug repositioning.

Authors: Brown AS, Patel CJ

Abstract: Objective: Drug repositioning is a promising methodology for reducing the cost and duration of the drug discovery pipeline. We sought to develop a computational repositioning method leveraging annotations in the literature, such as Medical Subject Heading (MeSH) terms. Methods: We developed software to determine significantly co-occurring drug-MeSH term pairs and a method to estimate pair-wise literature-derived distances between drugs. Results: We found that literature-based drug-drug similarities predicted the number of shared indications across drug-drug pairs. Clustering drugs based on their similarity revealed both known and novel drug indications. We demonstrate the utility of our approach by generating repositioning hypotheses for the commonly used diabetes drug metformin. Conclusion: Our study demonstrates that literature-derived similarity is useful for identifying potential repositioning opportunities. We provided open-source code and deployed a free-to-use, interactive application to explore our database of similarity-based drug clusters (available at http://apps.chiragjpgroup.org/MeSHDD/ ).
Published on May 1, 2017
READ PUBLICATION →

Synergistic drug combinations from electronic health records and gene expression.

Authors: Low YS, Daugherty AC, Schroeder EA, Chen W, Seto T, Weber S, Lim M, Hastie T, Mathur M, Desai M, Farrington C, Radin AA, Sirota M, Kenkare P, Thompson CA, Yu PP, Gomez SL, Sledge GW Jr, Kurian AW, Shah NH

Abstract: Objective: Using electronic health records (EHRs) and biomolecular data, we sought to discover drug pairs with synergistic repurposing potential. EHRs provide real-world treatment and outcome patterns, while complementary biomolecular data, including disease-specific gene expression and drug-protein interactions, provide mechanistic understanding. Method: We applied Group Lasso INTERaction NETwork (glinternet), an overlap group lasso penalty on a logistic regression model, with pairwise interactions to identify variables and interacting drug pairs associated with reduced 5-year mortality using EHRs of 9945 breast cancer patients. We identified differentially expressed genes from 14 case-control human breast cancer gene expression datasets and integrated them with drug-protein networks. Drugs in the network were scored according to their association with breast cancer individually or in pairs. Lastly, we determined whether synergistic drug pairs found in the EHRs were enriched among synergistic drug pairs from gene-expression data using a method similar to gene set enrichment analysis. Results: From EHRs, we discovered 3 drug-class pairs associated with lower mortality: anti-inflammatories and hormone antagonists, anti-inflammatories and lipid modifiers, and lipid modifiers and obstructive airway drugs. The first 2 pairs were also enriched among pairs discovered using gene expression data and are supported by molecular interactions in drug-protein networks and preclinical and epidemiologic evidence. Conclusions: This is a proof-of-concept study demonstrating that a combination of complementary data sources, such as EHRs and gene expression, can corroborate discoveries and provide mechanistic insight into drug synergism for repurposing.
Published on May 1, 2017
READ PUBLICATION →

Tracking Antibody Distribution with Near-Infrared Fluorescent Dyes: Impact of Dye Structure and Degree of Labeling on Plasma Clearance.

Authors: Cilliers C, Nessler I, Christodolu N, Thurber GM

Abstract: Monoclonal antibodies labeled with near-infrared (NIR) fluorophores have potential use in disease detection, intraoperative imaging, and pharmacokinetic characterization of therapeutic antibodies in both the preclinical and clinical setting. Recent work has shown conjugation of NIR fluorophores to antibodies can potentially alter antibody disposition at a sufficiently high degree of labeling (DoL); however, other reports show minimal impact after labeling with NIR fluorophores. In this work, we label two clinically approved antibodies, Herceptin (trastuzumab) and Avastin (bevacizumab), with NIR dyes IRDye 800CW (800CW) or Alexa Fluor 680 (AF680), at 1.2 and 0.3 dyes/antibody and examine the impact of fluorophore conjugation on antibody plasma clearance and tissue distribution. At 0.3 DoL, AF680 conjugates exhibited similar clearance to unlabeled antibody over 17 days while 800CW conjugates diverged after 4 days, suggesting AF680 is a more suitable choice for long-term pharmacokinetic studies. At the 1.2 DoL, 800CW conjugates cleared faster than unlabeled antibodies after several hours, in agreement with other published reports. The tissue biodistribution for bevacizumab-800CW and -AF680 conjugates agreed well with literature reported biodistributions using radiolabels. However, the greater tissue autofluorescence at 680 nm resulted in limited detection above background at low ( approximately 2 mg/kg) doses and 0.3 DoL for AF680, indicating that 800CW is more appropriate for short-term biodistribution measurements and intraoperative imaging. Overall, our work shows a DoL of 0.3 or less for non-site-specifically labeled antibodies (with a Poisson distribution) is ideal for limiting the impact of NIR fluorophores on antibody pharmacokinetics.
Published on May 1, 2017
READ PUBLICATION →

Drug-drug interaction discovery and demystification using Semantic Web technologies.

Authors: Noor A, Assiri A, Ayvaz S, Clark C, Dumontier M

Abstract: Objective: To develop a novel pharmacovigilance inferential framework to infer mechanistic explanations for asserted drug-drug interactions (DDIs) and deduce potential DDIs. Materials and Methods: A mechanism-based DDI knowledge base was constructed by integrating knowledge from several existing sources at the pharmacokinetic, pharmacodynamic, pharmacogenetic, and multipathway interaction levels. A query-based framework was then created to utilize this integrated knowledge base in conjunction with 9 inference rules to infer mechanistic explanations for asserted DDIs and deduce potential DDIs. Results: The drug-drug interactions discovery and demystification (D3) system achieved an overall 85% recall rate in terms of inferring mechanistic explanations for the DDIs integrated into its knowledge base, while demonstrating a 61% precision rate in terms of the inference or lack of inference of mechanistic explanations for a balanced, randomly selected collection of interacting and noninteracting drug pairs. Discussion: The successful demonstration of the D3 system's ability to confirm interactions involving well-studied drugs enhances confidence in its ability to deduce interactions involving less-studied drugs. In its demonstration, the D3 system infers putative explanations for most of its integrated DDIs. Further enhancements to this work in the future might include ranking interaction mechanisms based on likelihood of applicability, determining the likelihood of deduced DDIs, and making the framework publicly available. Conclusion: The D3 system provides an early-warning framework for augmenting knowledge of known DDIs and deducing unknown DDIs. It shows promise in suggesting interaction pathways of research and evaluation interest and aiding clinicians in evaluating and adjusting courses of drug therapy.
Published in April 2017
READ PUBLICATION →

TP53 and RET may serve as biomarkers of prognostic evaluation and targeted therapy in hepatocellular carcinoma.

Authors: Ye S, Zhao XY, Hu XG, Li T, Xu QR, Yang HM, Huang DS, Yang L

Abstract: Hepatocellular carcinoma (HCC) is the most common malignancy of the liver. Genomic analysis is conducted to identify genetic alterations in driver genes which are all druggable targets for cancer therapy. In the present study, we performed an exome sequencing of 45 driver genes in 100 paired samples from HCC patients including tumors and matched adjacent normal tissues using Illumina HiSeq 2000 platform. Non-synonymous mutations were ascertained using the iPLEX MassARRAY system and Sanger sequencing. Clinicopathological relevance with genetic variations was assessed using SPSS software. The prognostic analyses of patients with gene mutation status were summarized using Kaplan-Meier curves. Sixty-one non-synonymous somatic mutations were identified in 43% of the HCC patients. The most frequent mutations were: TP53 (20%), RET (6%), PLCE1 (5%), PTEN (4%) and VEGFR2 (3%). Patients with mutations in TP53 had a lower overall survival (OS) (P=0.002) than those without mutations. Recurrent mutations in the Ret protooncogene (RET) were associated with poor outcomes for both diseasefree survival (DFS) (P=0.028) and OS (P=0.001) in HCC patients. The mutational status of sorafenib-targeted genes were associated with decreased DFS (P=0.039), and decreased OS (P=0.15) without statistical significance. Mutual exclusion of TP53 and RET mutations were observed in the present study. In conclusion, patients with TP53 mutations, RET mutations and sorafenib-targeted gene mutations were demonstrated to be associated with poor HCC prognosis, which suggests that both TP53 and RET may serve as biomarkers of prognostic evaluation and targeted therapy in HCC.
Published in April 2017
READ PUBLICATION →

Metabolomics: A Primer.

Authors: Liu X, Locasale JW

Abstract: Metabolomics generates a profile of small molecules that are derived from cellular metabolism and can directly reflect the outcome of complex networks of biochemical reactions, thus providing insights into multiple aspects of cellular physiology. Technological advances have enabled rapid and increasingly expansive data acquisition with samples as small as single cells; however, substantial challenges in the field remain. In this primer we provide an overview of metabolomics, especially mass spectrometry (MS)-based metabolomics, which uses liquid chromatography (LC) for separation, and discuss its utilities and limitations. We identify and discuss several areas at the frontier of metabolomics. Our goal is to give the reader a sense of what might be accomplished when conducting a metabolomics experiment, now and in the near future.
Published in April - June 2017
READ PUBLICATION →

Micro-Environmental Signature of The Interactions between Druggable Target Protein, Dipeptidyl Peptidase-IV, and Anti-Diabetic Drugs.

Authors: Chakraborty C, Mallick B, Sharma AR, Sharma G, Jagga S, Doss CG, Nam JS, Lee SS

Abstract: OBJECTIVE: Druggability of a target protein depends on the interacting micro-environment between the target protein and drugs. Therefore, a precise knowledge of the interacting micro-environment between the target protein and drugs is requisite for drug discovery process. To understand such micro-environment, we performed in silico interaction analysis between a human target protein, Dipeptidyl Peptidase-IV (DPP-4), and three anti-diabetic drugs (saxagliptin, linagliptin and vildagliptin). MATERIALS AND METHODS: During the theoretical and bioinformatics analysis of micro-environmental properties, we performed drug-likeness study, protein active site predictions, docking analysis and residual interactions with the protein-drug interface. Micro-environmental landscape properties were evaluated through various parameters such as binding energy, intermolecular energy, electrostatic energy, van der Waals'+H-bond+desolvo energy (EVHD) and ligand efficiency (LE) using different in silico methods. For this study, we have used several servers and software, such as Molsoft prediction server, CASTp server, AutoDock software and LIGPLOT server. RESULTS: Through micro-environmental study, highest log P value was observed for linagliptin (1.07). Lowest binding energy was also observed for linagliptin with DPP-4 in the binding plot. We also identified the number of H-bonds and residues involved in the hydrophobic interactions between the DPP-4 and the anti-diabetic drugs. During interaction, two H-bonds and nine residues, two H-bonds and eleven residues as well as four H-bonds and nine residues were found between the saxagliptin, linagliptin as well as vildagliptin cases and DPP-4, respectively. CONCLUSION: Our in silico data obtained for drug-target interactions and micro-environmental signature demonstrates linagliptin as the most stable interacting drug among the tested anti-diabetic medicines.