Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in April 2017
READ PUBLICATION →

PharmGKB summary: Macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics.

Authors: Fohner AE, Sparreboom A, Altman RB, Klein TE

Abstract: 
Published in April 2017
READ PUBLICATION →

PhLeGrA: Graph Analytics in Pharmacology over the Web of Life Sciences Linked Open Data.

Authors: Kamdar MR, Musen MA

Abstract: Integrated approaches for pharmacology are required for the mechanism-based predictions of adverse drug reactions that manifest due to concomitant intake of multiple drugs. These approaches require the integration and analysis of biomedical data and knowledge from multiple, heterogeneous sources with varying schemas, entity notations, and formats. To tackle these integrative challenges, the Semantic Web community has published and linked several datasets in the Life Sciences Linked Open Data (LSLOD) cloud using established W3C standards. We present the PhLeGrA platform for Linked Graph Analytics in Pharmacology in this paper. Through query federation, we integrate four sources from the LSLOD cloud and extract a drug-reaction network, composed of distinct entities. We represent this graph as a hidden conditional random field (HCRF), a discriminative latent variable model that is used for structured output predictions. We calculate the underlying probability distributions in the drug-reaction HCRF using the datasets from the U.S. Food and Drug Administration's Adverse Event Reporting System. We predict the occurrence of 146 adverse reactions due to multiple drug intake with an AUROC statistic greater than 0.75. The PhLeGrA platform can be extended to incorporate other sources published using Semantic Web technologies, as well as to discover other types of pharmacological associations.
Published on April 28, 2017
READ PUBLICATION →

Large-scale detection of drug off-targets: hypotheses for drug repurposing and understanding side-effects.

Authors: Chartier M, Morency LP, Zylber MI, Najmanovich RJ

Abstract: BACKGROUND: Promiscuity in molecular interactions between small-molecules, including drugs, and proteins is widespread. Such unintended interactions can be exploited to suggest drug repurposing possibilities as well as to identify potential molecular mechanisms responsible for observed side-effects. METHODS: We perform a large-scale analysis to detect binding-site molecular interaction field similarities between the binding-sites of the primary target of 400 drugs against a dataset of 14082 cavities within 7895 different proteins representing a non-redundant dataset of all proteins with known structure. Statistically-significant cases with high levels of similarities represent potential cases where the drugs that bind the original target may in principle bind the suggested off-target. Such cases are further analysed with docking simulations to verify if indeed the drug could, in principle, bind the off-target. Diverse sources of data are integrated to associated potential cross-reactivity targets with side-effects. RESULTS: We observe that promiscuous binding-sites tend to display higher levels of hydrophobic and aromatic similarities. Focusing on the most statistically significant similarities (Z-score >/= 3.0) and corroborating docking results (RMSD < 2.0 A), we find 2923 cases involving 140 unique drugs and 1216 unique potential cross-reactivity protein targets. We highlight a few cases with a potential for drug repurposing (acetazolamide as a chorismate pyruvate lyase inhibitor, raloxifene as a bacterial quorum sensing inhibitor) as well as to explain the side-effects of zanamivir and captopril. A web-interface permits to explore the detected similarities for each of the 400 binding-sites of the primary drug targets and visualise them for the most statistically significant cases. CONCLUSIONS: The detection of molecular interaction field similarities provide the opportunity to suggest drug repurposing opportunities as well as to identify potential molecular mechanisms responsible for side-effects. All methods utilized are freely available and can be readily applied to new query binding-sites. All data is freely available and represents an invaluable source to identify further candidates for repurposing and suggest potential mechanisms responsible for side-effects.
Published on April 21, 2017
READ PUBLICATION →

Assessment of the significance of patent-derived information for the early identification of compound-target interaction hypotheses.

Authors: Senger S

Abstract: BACKGROUND: Patents are an important source of information for effective decision making in drug discovery. Encouragingly, freely accessible patent-chemistry databases are now in the public domain. However, at present there is still a wide gap between relatively low coverage-high quality manually-curated data sources and high coverage data sources that use text mining and automated extraction of chemical structures. To secure much needed funding for further research and an improved infrastructure, hard evidence is required to demonstrate the significance of patent-derived information in drug discovery. Surprisingly little such evidence has been reported so far. To address this, the present study attempts to quantify the relevance of patents for formulating and substantiating hypotheses for compound-target interactions. RESULTS: A manually-curated set of 130 compound-target interaction pairs annotated with what are considered to be the earliest patent and publication has been produced. The analysis of this set revealed that in stark contrast to what has been reported for novel chemical structures, only about 10% of the compound-target interaction pairs could be found in publications in the scientific literature within one year of being reported in patents. The average delay across all interaction pairs is close to 4 years. In an attempt to benchmark current capabilities, it was also examined how much of the benefit of using patent-derived information can be retained when a bioannotated version of SureChEMBL is used as secondary source for the patent literature. Encouragingly, this approach found the patents in the annotated set for 72% of the compound-target interaction pairs. Similarly, the effect of using the bioactivity database ChEMBL as secondary source for the scientific literature was studied. Here, the publications from the annotated set were only found for 46% of the compound-target interaction pairs. CONCLUSION: Patent-derived information is a significant enabler for formulating compound-target interaction hypotheses even in cases where the respective interaction is later reported in the scientific literature. The findings of this study clearly highlight the significance of future investments in the development and provision of databases and tools that will allow scientists to search patent information in a comprehensive, reliable, and efficient manner.
Published on April 21, 2017
READ PUBLICATION →

In-Silico Drug discovery approach targeting receptor tyrosine kinase-like orphan receptor 1 for cancer treatment.

Authors: Nath O, Singh A, Singh IK

Abstract: Receptor tyrosine kinases (RTK) are important cell signaling molecules that influence many cellular processes. Receptor tyrosine kinase such as orphan receptor 1 (Ror1), a surface antigen, is a member of the RTK family of Ror, which plays a crucial role in cancers that have high-grade histology. As Ror1 has been implicated to be a potential target for cancer therapy, we selected this protein for further investigation. The secondary and tertiary structure of this protein was determined, which revealed that this protein contained three beta-sheets, seven alpha-helices, and coils. The prediction of the active site revealed its cage-like function that opens for ligand entry and then closes for interacting with the ligands. Optimized ligands from the database were virtually screened to obtain the most efficient and potent ones. The screened ligands were evaluated for their therapeutic usefulness. Furthermore, the ligands that passed the test were docked to the target protein resulting in a few ligands with high score, which were analyzed further. The highest scoring ligand, Beta-1, 2,3,4,6-Penta-O-Galloyl-D-Glucopyranose was reported to be a naturally occurring tannin. This in silico approach indicates the potential of this molecule for advancing a further step in cancer treatment.
Published on April 20, 2017
READ PUBLICATION →

Learning from biomedical linked data to suggest valid pharmacogenes.

Authors: Dalleau K, Marzougui Y, Da Silva S, Ringot P, Ndiaye NC, Coulet A

Abstract: BACKGROUND: A standard task in pharmacogenomics research is identifying genes that may be involved in drug response variability, i.e., pharmacogenes. Because genomic experiments tended to generate many false positives, computational approaches based on the use of background knowledge have been proposed. Until now, only molecular networks or the biomedical literature were used, whereas many other resources are available. METHOD: We propose here to consume a diverse and larger set of resources using linked data related either to genes, drugs or diseases. One of the advantages of linked data is that they are built on a standard framework that facilitates the joint use of various sources, and thus facilitates considering features of various origins. We propose a selection and linkage of data sources relevant to pharmacogenomics, including for example DisGeNET and Clinvar. We use machine learning to identify and prioritize pharmacogenes that are the most probably valid, considering the selected linked data. This identification relies on the classification of gene-drug pairs as either pharmacogenomically associated or not and was experimented with two machine learning methods -random forest and graph kernel-, which results are compared in this article. RESULTS: We assembled a set of linked data relative to pharmacogenomics, of 2,610,793 triples, coming from six distinct resources. Learning from these data, random forest enables identifying valid pharmacogenes with a F-measure of 0.73, on a 10 folds cross-validation, whereas graph kernel achieves a F-measure of 0.81. A list of top candidates proposed by both approaches is provided and their obtention is discussed.
Published on April 19, 2017
READ PUBLICATION →

Detecting Disease Specific Pathway Substructures through an Integrated Systems Biology Approach.

Authors: Alaimo S, Marceca GP, Ferro A, Pulvirenti A

Abstract: In the era of network medicine, pathway analysis methods play a central role in the prediction of phenotype from high throughput experiments. In this paper, we present a network-based systems biology approach capable of extracting disease-perturbed subpathways within pathway networks in connection with expression data taken from The Cancer Genome Atlas (TCGA). Our system extends pathways with missing regulatory elements, such as microRNAs, and their interactions with genes. The framework enables the extraction, visualization, and analysis of statistically significant disease-specific subpathways through an easy to use web interface. Our analysis shows that the methodology is able to fill the gap in current techniques, allowing a more comprehensive analysis of the phenomena underlying disease states.
Published on April 17, 2017
READ PUBLICATION →

Computational Approach to Structural Alerts: Furans, Phenols, Nitroaromatics, and Thiophenes.

Authors: Dang NL, Hughes TB, Miller GP, Swamidass SJ

Abstract: Structural alerts are commonly used in drug discovery to identify molecules likely to form reactive metabolites and thereby become toxic. Unfortunately, as useful as structural alerts are, they do not effectively model if, when, and why metabolism renders safe molecules toxic. Toxicity due to a specific structural alert is highly conditional, depending on the metabolism of the alert, the reactivity of its metabolites, dosage, and competing detoxification pathways. A systems approach, which explicitly models these pathways, could more effectively assess the toxicity risk of drug candidates. In this study, we demonstrated that mathematical models of P450 metabolism can predict the context-specific probability that a structural alert will be bioactivated in a given molecule. This study focuses on the furan, phenol, nitroaromatic, and thiophene alerts. Each of these structural alerts can produce reactive metabolites through certain metabolic pathways but not always. We tested whether our metabolism modeling approach, XenoSite, can predict when a given molecule's alerts will be bioactivated. Specifically, we used models of epoxidation, quinone formation, reduction, and sulfur-oxidation to predict the bioactivation of furan-, phenol-, nitroaromatic-, and thiophene-containing drugs. Our models separated bioactivated and not-bioactivated furan-, phenol-, nitroaromatic-, and thiophene-containing drugs with AUC performances of 100%, 73%, 93%, and 88%, respectively. Metabolism models accurately predict whether alerts are bioactivated and thus serve as a practical approach to improve the interpretability and usefulness of structural alerts. We expect that this same computational approach can be extended to most other structural alerts and later integrated into toxicity risk models. This advance is one necessary step toward our long-term goal of building comprehensive metabolic models of bioactivation and detoxification to guide assessment and design of new therapeutic molecules.
Published on April 17, 2017
READ PUBLICATION →

Opportunities for developing therapies for rare genetic diseases: focus on gain-of-function and allostery.

Authors: Chen B, Altman RB

Abstract: BACKGROUND: Advances in next generation sequencing technologies have revolutionized our ability to discover the causes of rare genetic diseases. However, developing treatments for these diseases remains challenging. In fact, when we systematically analyze the US FDA orphan drug list, we find that only 8% of rare diseases have an FDA-designated drug. Our approach leverages three primary insights: first, diseases with gain-of-function mutations and late onset are more likely to have drug options; second, drugs are more often inhibitors than activators; and third, some disease-causing proteins can be rescued by allosteric activators in diseases due to loss-of-function mutations. RESULTS: We have developed a pipeline that combines natural language processing and human curation to mine promising targets for drug development from the Online Mendelian Inheritance in Man (OMIM) database. This pipeline targets diseases caused by well-characterized gain-of-function mutations or loss-of-function proteins with known allosteric activators. Applying this pipeline across thousands of rare genetic diseases, we discover 34 rare genetic diseases that are promising candidates for drug development. CONCLUSION: Our analysis has revealed uneven coverage of rare diseases in the current US FDA orphan drug space. Diseases with gain-of-function mutations or loss-of-function mutations and known allosteric activators should be prioritized for drug treatments.
Published on April 13, 2017
READ PUBLICATION →

The 2014 Philip S. Portoghese Medicinal Chemistry Lectureship: The "Phenylalkylaminome" with a Focus on Selected Drugs of Abuse.

Authors: Glennon RA

Abstract: The phenylalkylamine, particularly the phenylethylamine, moiety is a common structural feature found embedded in many clinically approved agents. Greater still is its occurrence in drugs of abuse. The simplest phenylethylamine, 2-phenylethylamine itself, is without significant central action when administered at moderate doses, but fairly simple structural modifications profoundly impact its pharmacology and result in large numbers of useful pharmacological tools, agents with therapeutic potential, and in drugs of abuse (e.g., hallucinogens, central stimulants, empathogens), the latter of which are the primary focus here. In vivo drug discrimination techniques and in vitro receptor/transporter methods have been applied to understand the actions of these phenylalkylamines and their mechanisms of action. Thus far, depending upon pendent substituents, certain receptors (e.g., serotonin receptors) and monoamine transporters (i.e., serotonin, dopamine, and norepinephrine transporters) have been implicated as playing major roles in the actions of these abused agents in a complex and, at times, interwoven manner.