Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in May 2017
READ PUBLICATION →

Biomedical Informatics Approaches to Identifying Drug-Drug Interactions: Application to Insulin Secretagogues.

Authors: Han X, Chiang C, Leonard CE, Bilker WB, Brensinger CM, Li L, Hennessy S

Abstract: BACKGROUND: Drug-drug interactions with insulin secretagogues are associated with increased risk of serious hypoglycemia in patients with type 2 diabetes. We aimed to systematically screen for drugs that interact with the five most commonly used secretagogues-glipizide, glyburide, glimepiride, repaglinide, and nateglinide-to cause serious hypoglycemia. METHODS: We screened 400 drugs frequently coprescribed with the secretagogues as candidate interacting precipitants. We first predicted the drug-drug interaction potential based on the pharmacokinetics of each secretagogue-precipitant pair. We then performed pharmacoepidemiologic screening for each secretagogue of interest, and for metformin as a negative control, using an administrative claims database and the self-controlled case series design. The overall rate ratios (RRs) and those for four predefined risk periods were estimated using Poisson regression. The RRs were adjusted for multiple estimation using semi-Bayes method, and then adjusted for metformin results to distinguish native effects of the precipitant from a drug-drug interaction. RESULTS: We predicted 34 pharmacokinetic drug-drug interactions with the secretagogues, nine moderate and 25 weak. There were 140 and 61 secretagogue-precipitant pairs associated with increased rates of serious hypoglycemia before and after the metformin adjustment, respectively. The results from pharmacokinetic prediction correlated poorly with those from pharmacoepidemiologic screening. CONCLUSIONS: The self-controlled case series design has the potential to be widely applicable to screening for drug-drug interactions that lead to adverse outcomes identifiable in healthcare databases. Coupling pharmacokinetic prediction with pharmacoepidemiologic screening did not notably improve the ability to identify drug-drug interactions in this case.
Published on May 31, 2017
READ PUBLICATION →

Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints.

Authors: Kim E, Nam H

Abstract: BACKGROUND: Drug-induced liver injury (DILI) is a critical issue in drug development because DILI causes failures in clinical trials and the withdrawal of approved drugs from the market. There have been many attempts to predict the risk of DILI based on in vivo and in silico identification of hepatotoxic compounds. In the current study, we propose the in silico prediction model predicting DILI using weighted molecular fingerprints. RESULTS: In this study, we used 881 bits of molecular fingerprint and used as features describing presence or absence of each substructure of compounds. Then, the Bayesian probability of each substructure was calculated and labeled (positive or negative for DILI), and a weighted fingerprint was determined from the ratio of DILI-positive to DILI-negative probability values. Using weighted fingerprint features, the prediction models were trained and evaluated with the Random Forest (RF) and Support Vector Machine (SVM) algorithms. The constructed models yielded accuracies of 73.8% and 72.6%, AUCs of 0.791 and 0.768 in cross-validation. In independent tests, models achieved accuracies of 60.1% and 61.1% for RF and SVM, respectively. The results validated that weighted features helped increase overall performance of prediction models. The constructed models were further applied to the prediction of natural compounds in herbs to identify DILI potential, and 13,996 unique herbal compounds were predicted as DILI-positive with the SVM model. CONCLUSIONS: The prediction models with weighted features increased the performance compared to non-weighted models. Moreover, we predicted the DILI potential of herbs with the best performed model, and the prediction results suggest that many herbal compounds could have potential to be DILI. We can thus infer that taking natural products without detailed references about the relevant pathways may be dangerous. Considering the frequency of use of compounds in natural herbs and their increased application in drug development, DILI labeling would be very important.
Published on May 31, 2017
READ PUBLICATION →

In silico re-identification of properties of drug target proteins.

Authors: Kim B, Jo J, Han J, Park C, Lee H

Abstract: BACKGROUND: Computational approaches in the identification of drug targets are expected to reduce time and effort in drug development. Advances in genomics and proteomics provide the opportunity to uncover properties of druggable genomes. Although several studies have been conducted for distinguishing drug targets from non-drug targets, they mainly focus on the sequences and functional roles of proteins. Many other properties of proteins have not been fully investigated. METHODS: Using the DrugBank (version 3.0) database containing nearly 6,816 drug entries including 760 FDA-approved drugs and 1822 of their targets and human UniProt/Swiss-Prot databases, we defined 1578 non-redundant drug target and 17,575 non-drug target proteins. To select these non-redundant protein datasets, we built four datasets (A, B, C, and D) by considering clustering of paralogous proteins. RESULTS: We first reassessed the widely used properties of drug target proteins. We confirmed and extended that drug target proteins (1) are likely to have more hydrophobic, less polar, less PEST sequences, and more signal peptide sequences higher and (2) are more involved in enzyme catalysis, oxidation and reduction in cellular respiration, and operational genes. In this study, we proposed new properties (essentiality, expression pattern, PTMs, and solvent accessibility) for effectively identifying drug target proteins. We found that (1) drug targetability and protein essentiality are decoupled, (2) druggability of proteins has high expression level and tissue specificity, and (3) functional post-translational modification residues are enriched in drug target proteins. In addition, to predict the drug targetability of proteins, we exploited two machine learning methods (Support Vector Machine and Random Forest). When we predicted drug targets by combining previously known protein properties and proposed new properties, an F-score of 0.8307 was obtained. CONCLUSIONS: When the newly proposed properties are integrated, the prediction performance is improved and these properties are related to drug targets. We believe that our study will provide a new aspect in inferring drug-target interactions.
Published in May 2017
READ PUBLICATION →

Pharmacophore-based screening and drug repurposing exemplified on glycogen synthase kinase-3 inhibitors.

Authors: Crisan L, Avram S, Pacureanu L

Abstract: The current study was conducted to elaborate a novel pharmacophore model to accurately map selective glycogen synthase kinase-3 (GSK-3) inhibitors, and perform virtual screening and drug repurposing. Pharmacophore modeling was developed using PHASE on a data set of 203 maleimides. Two benchmarking validation data sets with focus on selectivity were assembled using ChEMBL and PubChem GSK-3 confirmatory assays. A drug repurposing experiment linking pharmacophore matching with drug information originating from multiple data sources was performed. A five-point pharmacophore model was built consisting of a hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic (H), and two rings (RR). An atom-based 3D quantitative structure-activity relationship (QSAR) model showed good correlative and satisfactory predictive abilities (training set [Formula: see text]; test set: [Formula: see text]; whole data set: stability [Formula: see text]). Virtual screening experiments revealed that selective GSK-3 inhibitors are ranked preferentially by Hypo-1, but fail to retrieve nonselective compounds. The pharmacophore and 3D QSAR models can provide assistance to design novel, potential GSK-3 inhibitors with high potency and selectivity pattern, with potential application for the treatment of GSK-3-driven diseases. A class of purine nucleoside antileukemic drugs was identified as potential inhibitor of GSK-3, suggesting the reassessment of the target range of these drugs.
Published in May 2017
READ PUBLICATION →

Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions.

Authors: Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC

Abstract: Identification of effective combination therapies is critical to address the emergence of drug-resistant cancers, but direct screening of all possible drug combinations is infeasible. Here we introduce a CRISPR-based double knockout (CDKO) system that improves the efficiency of combinatorial genetic screening using an effective strategy for cloning and sequencing paired single guide RNA (sgRNA) libraries and a robust statistical scoring method for calculating genetic interactions (GIs) from CRISPR-deleted gene pairs. We applied CDKO to generate a large-scale human GI map, comprising 490,000 double-sgRNAs directed against 21,321 pairs of drug targets in K562 leukemia cells and identified synthetic lethal drug target pairs for which corresponding drugs exhibit synergistic killing. These included the BCL2L1 and MCL1 combination, which was also effective in imatinib-resistant cells. We further validated this system by identifying known and previously unidentified GIs between modifiers of ricin toxicity. This work provides an effective strategy to screen synergistic drug combinations in high-throughput and a CRISPR-based tool to dissect functional GI networks.
Published on May 30, 2017
READ PUBLICATION →

Identification of novel MRP3 inhibitors based on computational models and validation using an in vitro membrane vesicle assay.

Authors: Ali I, Welch MA, Lu Y, Swaan PW, Brouwer KLR

Abstract: INTRODUCTION: Multidrug resistance-associated protein 3 (MRP3), an efflux transporter on the hepatic basolateral membrane, may function as a compensatory mechanism to prevent the accumulation of anionic substrates (e.g., bile acids) in hepatocytes. Inhibition of MRP3 may disrupt bile acid homeostasis and is one hypothesized risk factor for the development of drug-induced liver injury (DILI). Therefore, identifying potential MRP3 inhibitors could help mitigate the occurrence of DILI. METHODS: Bayesian models were developed using MRP3 transporter inhibition data for 86 structurally diverse drugs. The compounds were split into training and test sets of 57 and 29 compounds, respectively, and six models were generated based on distinct inhibition thresholds and molecular fingerprint methods. The six Bayesian models were validated against the test set and the model with the highest accuracy was utilized for a virtual screen of 1470 FDA-approved drugs from DrugBank. Compounds that were predicted to be inhibitors were selected for in vitro validation. The ability of these compounds to inhibit MRP3 transport at a concentration of 100muM was measured in membrane vesicles derived from stably transfected MRP3-over-expressing HEK-293 cells with [(3)H]-estradiol-17beta-d-glucuronide (E217G; 10muM; 5min uptake) as the probe substrate. RESULTS: A predictive Bayesian model was developed with a sensitivity of 73% and specificity of 71% against the test set used to evaluate the six models. The area under the Receiver Operating Characteristic (ROC) curve was 0.710 against the test set. The final selected model was based on compounds that inhibited substrate transport by at least 50% compared to the negative control, and functional-class fingerprints (FCFP) with a circular diameter of six atoms, in addition to one-dimensional physicochemical properties. The in vitro screening of predicted inhibitors and non-inhibitors resulted in similar model performance with a sensitivity of 64% and specificity of 70%. The strongest inhibitors of MRP3-mediated E217G transport were fidaxomicin, suramin, and dronedarone. Kinetic assessment revealed that fidaxomicin was the most potent of these inhibitors (IC50=1.83+/-0.46muM). Suramin and dronedarone exhibited IC50 values of 3.33+/-0.41 and 47.44+/-4.41muM, respectively. CONCLUSION: Bayesian models are a useful screening approach to identify potential inhibitors of transport proteins. Novel MRP3 inhibitors were identified by virtual screening using the selected Bayesian model, and MRP3 inhibition was confirmed by an in vitro transporter inhibition assay. Information generated using this modeling approach may be valuable in predicting the potential for DILI and/or MRP3-mediated drug-drug interactions.
Published on May 24, 2017
READ PUBLICATION →

Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants.

Authors: Tsoi LC, Stuart PE, Tian C, Gudjonsson JE, Das S, Zawistowski M, Ellinghaus E, Barker JN, Chandran V, Dand N, Duffin KC, Enerback C, Esko T, Franke A, Gladman DD, Hoffmann P, Kingo K, Koks S, Krueger GG, Lim HW, Metspalu A, Mrowietz U, Mucha S, Rahman P, Reis A, Tejasvi T, Trembath R, Voorhees JJ, Weidinger S, Weichenthal M, Wen X, Eriksson N, Kang HM, Hinds DA, Nair RP, Abecasis GR, Elder JT

Abstract: Psoriasis is a complex disease of skin with a prevalence of about 2%. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for psoriasis to date, including data from eight different Caucasian cohorts, with a combined effective sample size >39,000 individuals. We identified 16 additional psoriasis susceptibility loci achieving genome-wide significance, increasing the number of identified loci to 63 for European-origin individuals. Functional analysis highlighted the roles of interferon signalling and the NFkappaB cascade, and we showed that the psoriasis signals are enriched in regulatory elements from different T cells (CD8(+) T-cells and CD4(+) T-cells including TH0, TH1 and TH17). The identified loci explain approximately 28% of the genetic heritability and generate a discriminatory genetic risk score (AUC=0.76 in our sample) that is significantly correlated with age at onset (p=2 x 10(-89)). This study provides a comprehensive layout for the genetic architecture of common variants for psoriasis.
Published on May 18, 2017
READ PUBLICATION →

Network mirroring for drug repositioning.

Authors: Park S, Lee DG, Shin H

Abstract: BACKGROUND: Although drug discoveries can provide meaningful insights and significant enhancements in pharmaceutical field, the longevity and cost that it takes can be extensive where the success rate is low. In order to circumvent the problem, there has been increased interest in 'Drug Repositioning' where one searches for already approved drugs that have high potential of efficacy when applied to other diseases. To increase the success rate for drug repositioning, one considers stepwise screening and experiments based on biological reactions. Given the amount of drugs and diseases, however, the one-by-one procedure may be time consuming and expensive. METHODS: In this study, we propose a machine learning based approach for efficiently selecting candidate diseases and drugs. We assume that if two diseases are similar, then a drug for one disease can be effective against the other disease too. For the procedure, we first construct two disease networks; one with disease-protein association and the other with disease-drug information. If two networks are dissimilar, in a sense that the edge distribution of a disease node differ, it indicates high potential for repositioning new candidate drugs for that disease. The Kullback-Leibler divergence is employed to measure difference of connections in two constructed disease networks. Lastly, we perform repositioning of drugs to the top 20% ranked diseases. RESULTS: The results showed that F-measure of the proposed method was 0.75, outperforming 0.5 of greedy searching for the entire diseases. For the utility of the proposed method, it was applied to dementia and verified 75% accuracy for repositioned drugs assuming that there are not any known drugs to be used for dementia. CONCLUSION: This research has novelty in that it discovers drugs with high potential of repositioning based on disease networks with the quantitative measure. Through the study, it is expected to produce profound insights for possibility of undiscovered drug repositioning.
Published on May 18, 2017
READ PUBLICATION →

Identification of MYST3 as a novel epigenetic activator of ERalpha frequently amplified in breast cancer.

Authors: Yu L, Liang Y, Cao X, Wang X, Gao H, Lin SY, Schiff R, Wang XS, Li K

Abstract: Estrogen receptor alpha (ERalpha) is a master driver of a vast majority of breast cancers. Breast cancer cells often develop resistance to endocrine therapy via restoration of the ERalpha activity through survival pathways. Thus identifying the epigenetic activator of ERalpha that can be targeted to block ERalpha gene expression is a critical topic of endocrine therapy. Here, integrative genomic analysis identified MYST3 as a potential oncogene target that is frequently amplified in breast cancer. MYST3 is involved in histone acetylation via its histone acetyltransferase domain (HAT) and, as a result, activates gene expression by altering chromatin structure. We found that MYST3 was amplified in 11% and/or overexpressed in 15% of breast tumors, and overexpression of MYST3 correlated with worse clinical outcome in estrogen receptor+ (ER+) breast cancers. Interestingly, MYST3 depletion drastically inhibited proliferation in MYST3-high, ER+ breast cancer cells, but not in benign breast epithelial cells or in MYST3-low breast cancer cells. Importantly, we discovered that knocking down MYST3 resulted in profound reduction of ERalpha expression, while ectopic expression of MYST3 had the reversed effect. Chromatin immunoprecipitation revealed that MYST3 binds to the proximal promoter region of ERalpha gene, and inactivating mutations in its HAT domain abolished its ability to regulate ERalpha, suggesting MYST3 functioning as a histone acetyltransferase that activates ERalpha promoter. Furthermore, MYST3 inhibition with inducible MYST3 shRNAs potently attenuated breast tumor growth in mice. Together, this study identifies the first histone acetyltransferase that activates ERalpha expression which may be potentially targeted to block ERalpha at transcriptional level.
Published on May 18, 2017
READ PUBLICATION →

CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods.

Authors: Zhang L, Ai H, Chen W, Yin Z, Hu H, Zhu J, Zhao J, Zhao Q, Liu H

Abstract: Carcinogenicity refers to a highly toxic end point of certain chemicals, and has become an important issue in the drug development process. In this study, three novel ensemble classification models, namely Ensemble SVM, Ensemble RF, and Ensemble XGBoost, were developed to predict carcinogenicity of chemicals using seven types of molecular fingerprints and three machine learning methods based on a dataset containing 1003 diverse compounds with rat carcinogenicity. Among these three models, Ensemble XGBoost is found to be the best, giving an average accuracy of 70.1 +/- 2.9%, sensitivity of 67.0 +/- 5.0%, and specificity of 73.1 +/- 4.4% in five-fold cross-validation and an accuracy of 70.0%, sensitivity of 65.2%, and specificity of 76.5% in external validation. In comparison with some recent methods, the ensemble models outperform some machine learning-based approaches and yield equal accuracy and higher specificity but lower sensitivity than rule-based expert systems. It is also found that the ensemble models could be further improved if more data were available. As an application, the ensemble models are employed to discover potential carcinogens in the DrugBank database. The results indicate that the proposed models are helpful in predicting the carcinogenicity of chemicals. A web server called CarcinoPred-EL has been built for these models ( http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/ ).