Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in 2015
READ PUBLICATION →

Three-component synthesis of C2F5-substituted pyrazoles from C2F5CH2NH2.HCl, NaNO2 and electron-deficient alkynes.

Authors: Mykhailiuk PK

Abstract: A one-pot reaction between C2F5CH2NH2.HCl, NaNO2 and electron-deficient alkynes gives C2F5-substituted pyrazoles in excellent yields. The transformation smoothly proceeds in dichloromethane/water, tolerates the presence of air, and requires no purification of products by column chromatography. Mechanistically, C2F5CH2NH2.HCl and NaNO2 react first in water to generate C2F5CHN2, that participates in a [3 + 2] cycloaddition with electron-deficient alkynes in dichloromethane.
Published in 2015
READ PUBLICATION →

The Chemical Validation and Standardization Platform (CVSP): large-scale automated validation of chemical structure datasets.

Authors: Karapetyan K, Batchelor C, Sharpe D, Tkachenko V, Williams AJ

Abstract: BACKGROUND: There are presently hundreds of online databases hosting millions of chemical compounds and associated data. As a result of the number of cheminformatics software tools that can be used to produce the data, subtle differences between the various cheminformatics platforms, as well as the naivety of the software users, there are a myriad of issues that can exist with chemical structure representations online. In order to help facilitate validation and standardization of chemical structure datasets from various sources we have delivered a freely available internet-based platform to the community for the processing of chemical compound datasets. RESULTS: The chemical validation and standardization platform (CVSP) both validates and standardizes chemical structure representations according to sets of systematic rules. The chemical validation algorithms detect issues with submitted molecular representations using pre-defined or user-defined dictionary-based molecular patterns that are chemically suspicious or potentially requiring manual review. Each identified issue is assigned one of three levels of severity - Information, Warning, and Error - in order to conveniently inform the user of the need to browse and review subsets of their data. The validation process includes validation of atoms and bonds (e.g., making aware of query atoms and bonds), valences, and stereo. The standard form of submission of collections of data, the SDF file, allows the user to map the data fields to predefined CVSP fields for the purpose of cross-validating associated SMILES and InChIs with the connection tables contained within the SDF file. This platform has been applied to the analysis of a large number of data sets prepared for deposition to our ChemSpider database and in preparation of data for the Open PHACTS project. In this work we review the results of the automated validation of the DrugBank dataset, a popular drug and drug target database utilized by the community, and ChEMBL 17 data set. CVSP web site is located at http://cvsp.chemspider.com/. CONCLUSION: A platform for the validation and standardization of chemical structure representations of various formats has been developed and made available to the community to assist and encourage the processing of chemical structure files to produce more homogeneous compound representations for exchange and interchange between online databases. While the CVSP platform is designed with flexibility inherent to the rules that can be used for processing the data we have produced a recommended rule set based on our own experiences with the large data sets such as DrugBank, ChEMBL, and data sets from ChemSpider.
Published in 2015
READ PUBLICATION →

Quercetin Influences Quorum Sensing in Food Borne Bacteria: In-Vitro and In-Silico Evidence.

Authors: Gopu V, Meena CK, Shetty PH

Abstract: Quorum sensing (QS) plays a vital role in regulating the virulence factor of many food borne pathogens, which causes severe public health risk. Therefore, interrupting the QS signaling pathway may be an attractive strategy to combat microbial infections. In the current study QS inhibitory activity of quercetin and its anti-biofilm property was assessed against food-borne pathogens using a bio-sensor strain. In addition in-silico techniques like molecular docking and molecular dynamics simulation studies were applied to screen the quercetin's potentiality as QS inhibitor. Quercetin (80 mug/ml) showed the significant reduction in QS-dependent phenotypes like violacein production, biofilm formation, exopolysaccharide (EPS) production, motility and alginate production in a concentration-dependent manner. Synergistic activity of conventional antibiotics with quercetin enhanced the susceptibility of all tested pathogens. Furthermore, Molecular docking analysis revealed that quercetin binds more rigidly with LasR receptor protein than the signaling compound with docking score of -9.17 Kcal/mol. Molecular dynamics simulation predicted that QS inhibitory activity of quercetin occurs through the conformational changes between the receptor and quercetin complex. Above findings suggest that quercetin can act as a competitive inhibitor for signaling compound towards LasR receptor pathway and can serve as a novel QS-based antibacterial/anti-biofilm drug to manage food-borne pathogens.
Published in 2015
READ PUBLICATION →

DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue.

Authors: Wang Q, Xu R

Abstract: Dengue is a viral disease of expanding global incidence without cures. Here we present a drug repositioning system (DenguePredict) leveraging upon a unique drug treatment database and vast amounts of disease- and drug-related data. We first constructed a large-scale genetic disease network with enriched dengue genetics data curated from biomedical literature. We applied a network-based ranking algorithm to find dengue-related diseases from the disease network. We then developed a novel algorithm to prioritize FDA-approved drugs from dengue-related diseases to treat dengue. When tested in a de-novo validation setting, DenguePredict found the only two drugs tested in clinical trials for treating dengue and ranked them highly: chloroquine ranked at top 0.96% and ivermectin at top 22.75%. We showed that drugs targeting immune systems and arachidonic acid metabolism-related apoptotic pathways might represent innovative drugs to treat dengue. In summary, DenguePredict, by combining comprehensive disease- and drug-related data and novel algorithms, may greatly facilitate drug discovery for dengue.
Published in 2015
READ PUBLICATION →

Virtual Pharmacist: A Platform for Pharmacogenomics.

Authors: Cheng R, Leung RK, Chen Y, Pan Y, Tong Y, Li Z, Ning L, Ling XB, He J

Abstract: We present Virtual Pharmacist, a web-based platform that takes common types of high-throughput data, namely microarray SNP genotyping data, FASTQ and Variant Call Format (VCF) files as inputs, and reports potential drug responses in terms of efficacy, dosage and toxicity at one glance. Batch submission facilitates multivariate analysis or data mining of targeted groups. Individual analysis consists of a report that is readily comprehensible to patients and practioners who have basic knowledge in pharmacology, a table that summarizes variants and potential affected drug response according to the US Food and Drug Administration pharmacogenomic biomarker labeled drug list and PharmGKB, and visualization of a gene-drug-target network. Group analysis provides the distribution of the variants and potential affected drug response of a target group, a sample-gene variant count table, and a sample-drug count table. Our analysis of genomes from the 1000 Genome Project underlines the potentially differential drug responses among different human populations. Even within the same population, the findings from Watson's genome highlight the importance of personalized medicine. Virtual Pharmacist can be accessed freely at http://www.sustc-genome.org.cn/vp or installed as a local web server. The codes and documentation are available at the GitHub repository (https://github.com/VirtualPharmacist/vp). Administrators can download the source codes to customize access settings for further development.
Published in 2015
READ PUBLICATION →

Oncogenes and tumor suppressor genes: comparative genomics and network perspectives.

Authors: Zhu K, Liu Q, Zhou Y, Tao C, Zhao Z, Sun J, Xu H

Abstract: BACKGROUND: Defective tumor suppressor genes (TSGs) and hyperactive oncogenes (OCGs) heavily contribute to cell proliferation and apoptosis during cancer development through genetic variations such as somatic mutations and deletions. Moreover, they usually do not perform their cellular functions individually but rather execute jointly. Therefore, a comprehensive comparison of their mutation patterns and network properties may provide a deeper understanding of their roles in the cancer development and provide some clues for identification of novel targets. RESULTS: In this study, we performed a comprehensive survey of TSGs and OCGs from the perspectives of somatic mutations and network properties. For comparative purposes, we choose five gene sets: TSGs, OCGs, cancer drug target genes, essential genes, and other genes. Based on the data from Pan-Cancer project, we found that TSGs had the highest mutation frequency in most tumor types and the OCGs second. The essential genes had the lowest mutation frequency in all tumor types. For the network properties in the human protein-protein interaction (PPI) network, we found that, relative to target proteins, essential proteins, and other proteins, the TSG proteins and OCG proteins both tended to have higher degrees, higher betweenness, lower clustering coefficients, and shorter shortest-path distances. Moreover, the TSG proteins and OCG proteins tended to have direct interactions with cancer drug target proteins. To further explore their relationship, we generated a TSG-OCG network and found that TSGs and OCGs connected strongly with each other. The integration of the mutation frequency with the TSG-OCG network offered a network view of TSGs, OCGs, and their interactions, which may provide new insights into how the TSGs and OCGs jointly contribute to the cancer development. CONCLUSIONS: Our study first discovered that the OCGs and TSGs had different mutation patterns, but had similar and stronger protein-protein characteristics relative to the essential proteins or control proteins in the whole human interactome. We also found that the TSGs and OCGs had the most direct interactions with cancer drug targets. The results will be helpful for cancer drug target identification, and ultimately, understanding the etiology of cancer and treatment at the network level.
Published in 2015
READ PUBLICATION →

A survey on the computational approaches to identify drug targets in the postgenomic era.

Authors: Dai YF, Zhao XM

Abstract: Identifying drug targets plays essential roles in designing new drugs and combating diseases. Unfortunately, our current knowledge about drug targets is far from comprehensive. Screening drug targets in the lab is an expensive and time-consuming procedure. In the past decade, the accumulation of various types of omics data makes it possible to develop computational approaches to predict drug targets. In this paper, we make a survey on the recent progress being made on computational methodologies that have been developed to predict drug targets based on different kinds of omics data and drug property data.
Published in 2015
READ PUBLICATION →

A modularity-based method reveals mixed modules from chemical-gene heterogeneous network.

Authors: Song J, Tang S, Liu X, Gao Y, Yang H, Lu P

Abstract: For a multicomponent therapy, molecular network is essential to uncover its specific mode of action from a holistic perspective. The molecular system of a Traditional Chinese Medicine (TCM) formula can be represented by a 2-class heterogeneous network (2-HN), which typically includes chemical similarities, chemical-target interactions and gene interactions. An important premise of uncovering the molecular mechanism is to identify mixed modules from complex chemical-gene heterogeneous network of a TCM formula. We thus proposed a novel method (MixMod) based on mixed modularity to detect accurate mixed modules from 2-HNs. At first, we compared MixMod with Clauset-Newman-Moore algorithm (CNM), Markov Cluster algorithm (MCL), Infomap and Louvain on benchmark 2-HNs with known module structure. Results showed that MixMod was superior to other methods when 2-HNs had promiscuous module structure. Then these methods were tested on a real drug-target network, in which 88 disease clusters were regarded as real modules. MixMod could identify the most accurate mixed modules from the drug-target 2-HN (normalized mutual information 0.62 and classification accuracy 0.4524). In the end, MixMod was applied to the 2-HN of Buchang naoxintong capsule (BNC) and detected 49 mixed modules. By using enrichment analysis, we investigated five mixed modules that contained primary constituents of BNC intestinal absorption liquid. As a matter of fact, the findings of in vitro experiments using BNC intestinal absorption liquid were found to highly accord with previous analysis. Therefore, MixMod is an effective method to detect accurate mixed modules from chemical-gene heterogeneous networks and further uncover the molecular mechanism of multicomponent therapies, especially TCM formulae.
Published in December 2015
READ PUBLICATION →

A context-aware approach for progression tracking of medical concepts in electronic medical records.

Authors: Chang NW, Dai HJ, Jonnagaddala J, Chen CW, Tsai RT, Hsu WL

Abstract: Electronic medical records (EMRs) for diabetic patients contain information about heart disease risk factors such as high blood pressure, cholesterol levels, and smoking status. Discovering the described risk factors and tracking their progression over time may support medical personnel in making clinical decisions, as well as facilitate data modeling and biomedical research. Such highly patient-specific knowledge is essential to driving the advancement of evidence-based practice, and can also help improve personalized medicine and care. One general approach for tracking the progression of diseases and their risk factors described in EMRs is to first recognize all temporal expressions, and then assign each of them to the nearest target medical concept. However, this method may not always provide the correct associations. In light of this, this work introduces a context-aware approach to assign the time attributes of the recognized risk factors by reconstructing contexts that contain more reliable temporal expressions. The evaluation results on the i2b2 test set demonstrate the efficacy of the proposed approach, which achieved an F-score of 0.897. To boost the approach's ability to process unstructured clinical text and to allow for the reproduction of the demonstrated results, a set of developed .NET libraries used to develop the system is available at https://sites.google.com/site/hongjiedai/projects/nttmuclinicalnet.
Published in 2015
READ PUBLICATION →

Prediction of Metabolic Gene Biomarkers for Neurodegenerative Disease by an Integrated Network-Based Approach.

Authors: Ni Q, Su X, Chen J, Tian W

Abstract: Neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Huntington's disease (HD), have become more and more common among aged people worldwide. One hallmark of NDs is the presence of intracellular accumulation of specific pathogenic proteins that may result from abnormal function of metabolic processes. Previously, we have developed a computational method named Met-express that predicted key enzyme-coding genes in cancer development by integrating cancer gene coexpression network with the metabolic network. Here, we applied Met-express to predict key enzyme-coding genes in both PD and HD. Functional enrichment analysis and literature review of predicted genes suggested that there might be some common pathogenic metabolic pathways for PD and HD. We further found that the predicted genes had significant functional association with known disease genes, with some of them already documented as biomarkers or therapeutic targets for NDs. As such, the predicted metabolic genes may be of use as novel biomarkers not only for ND diagnosis but also for potential therapeutic treatments.