Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in January 2011
READ PUBLICATION →

HIT: linking herbal active ingredients to targets.

Authors: Ye H, Ye L, Kang H, Zhang D, Tao L, Tang K, Liu X, Zhu R, Liu Q, Chen YZ, Li Y, Cao Z

Abstract: The information of protein targets and small molecule has been highly valued by biomedical and pharmaceutical research. Several protein target databases are available online for FDA-approved drugs as well as the promising precursors that have largely facilitated the mechanistic study and subsequent research for drug discovery. However, those related resources regarding to herbal active ingredients, although being unusually valued as a precious resource for new drug development, is rarely found. In this article, a comprehensive and fully curated database for Herb Ingredients' Targets (HIT, http://lifecenter.sgst.cn/hit/) has been constructed to complement above resources. Those herbal ingredients with protein target information were carefully curated. The molecular target information involves those proteins being directly/indirectly activated/inhibited, protein binders and enzymes whose substrates or products are those compounds. Those up/down regulated genes are also included under the treatment of individual ingredients. In addition, the experimental condition, observed bioactivity and various references are provided as well for user's reference. Derived from more than 3250 literatures, it currently contains 5208 entries about 1301 known protein targets (221 of them are described as direct targets) affected by 586 herbal compounds from more than 1300 reputable Chinese herbs, overlapping with 280 therapeutic targets from Therapeutic Targets Database (TTD), and 445 protein targets from DrugBank corresponding to 1488 drug agents. The database can be queried via keyword search or similarity search. Crosslinks have been made to TTD, DrugBank, KEGG, PDB, Uniprot, Pfam, NCBI, TCM-ID and other databases.
Published in January 2011
READ PUBLICATION →

FragmentStore--a comprehensive database of fragments linking metabolites, toxic molecules and drugs.

Authors: Ahmed J, Worth CL, Thaben P, Matzig C, Blasse C, Dunkel M, Preissner R

Abstract: Consideration of biomolecules in terms of their molecular building blocks provides valuable new information regarding their synthesis, degradation and similarity. Here, we present the FragmentStore, a resource for the comparison of fragments found in metabolites, drugs or toxic compounds. Starting from 13,000 metabolites, 16,000 drugs and 2200 toxic compounds we generated 35,000 different building blocks (fragments), which are not only relevant to their biosynthesis and degradation but also provide important information regarding side-effects and toxicity. The FragmentStore provides a variety of search options such as 2D structure, molecular weight, rotatable bonds, etc. Various analysis tools have been implemented including the calculation of amino acid preferences of fragments' binding sites, classification of fragments based on the enzyme classification class of the enzyme(s) they bind to and small molecule library generation via a fragment-assembler tool. Using the FragmentStore, it is now possible to identify the common fragments of different classes of molecules and generate hypotheses about the effects of such intersections. For instance, the co-occurrence of fragments in different drugs may indicate similar targets and possible off-target interactions whereas the co-occurrence of fragments in a drug and a toxic compound/metabolite could be indicative of side-effects. The database is publicly available at: http://bioinformatics.charite.de/fragment_store.
Published in January 2011
READ PUBLICATION →

CancerResource: a comprehensive database of cancer-relevant proteins and compound interactions supported by experimental knowledge.

Authors: Ahmed J, Meinel T, Dunkel M, Murgueitio MS, Adams R, Blasse C, Eckert A, Preissner S, Preissner R

Abstract: During the development of methods for cancer diagnosis and treatment, a vast amount of information is generated. Novel cancer target proteins have been identified and many compounds that activate or inhibit cancer-relevant target genes have been developed. This knowledge is based on an immense number of experimentally validated compound-target interactions in the literature, and excerpts from literature text mining are spread over numerous data sources. Our own analysis shows that the overlap between important existing repositories such as Comparative Toxicogenomics Database (CTD), Therapeutic Target Database (TTD), Pharmacogenomics Knowledge Base (PharmGKB) and DrugBank as well as between our own literature mining for cancer-annotated entries is surprisingly small. In order to provide an easy overview of interaction data, it is essential to integrate this information into a single, comprehensive data repository. Here, we present CancerResource, a database that integrates cancer-relevant relationships of compounds and targets from (i) our own literature mining and (ii) external resources complemented with (iii) essential experimental and supporting information on genes and cellular effects. In order to facilitate an overview of existing and supporting information, a series of novel information connections have been established. CancerResource addresses the spectrum of research on compound-target interactions in natural sciences as well as in individualized medicine; CancerResource is available at: http://bioinformatics.charite.de/cancerresource/.
Published in January 2011
READ PUBLICATION →

PROMISCUOUS: a database for network-based drug-repositioning.

Authors: von Eichborn J, Murgueitio MS, Dunkel M, Koerner S, Bourne PE, Preissner R

Abstract: The procedure of drug approval is time-consuming, costly and risky. Accidental findings regarding multi-specificity of approved drugs led to block-busters in new indication areas. Therefore, the interest in systematically elucidating new areas of application for known drugs is rising. Furthermore, the knowledge, understanding and prediction of so-called off-target effects allow a rational approach to the understanding of side-effects. With PROMISCUOUS we provide an exhaustive set of drugs (25,000), including withdrawn or experimental drugs, annotated with drug-protein and protein-protein relationships (21,500/104,000) compiled from public resources via text and data mining including manual curation. Measures of structural similarity for drugs as well as known side-effects can be easily connected to protein-protein interactions to establish and analyse networks responsible for multi-pharmacology. This network-based approach can provide a starting point for drug-repositioning. PROMISCUOUS is publicly available at http://bioinformatics.charite.de/promiscuous.
Published in January 2011
READ PUBLICATION →

VnD: a structure-centric database of disease-related SNPs and drugs.

Authors: Yang JO, Oh S, Ko G, Park SJ, Kim WY, Lee B, Lee S

Abstract: Numerous genetic variations have been found to be related to human diseases. Significant portion of those affect the drug response as well by changing the protein structure and function. Therefore, it is crucial to understand the trilateral relationship among genomic variations, diseases and drugs. We present the variations and drugs (VnD), a consolidated database containing information on diseases, related genes and genetic variations, protein structures and drug information. VnD was built in three steps. First, we integrated various resources systematically to deduce catalogs of disease-related genes, single nucleotide polymorphisms (SNPs), protein mutations and relevant drugs. VnD contains 137,195 disease-related gene records (13,940 distinct genes) and 16,586 genetic variation records (1790 distinct variations). Next, we carried out structure modeling and docking simulation for wild-type and mutant proteins to examine the structural and functional consequences of non-synonymous SNPs in the drug-related genes. Conformational changes in 590 wild-type and 4437 mutant proteins from drug-related genes were included in our database. Finally, we investigated the structural and biochemical properties relevant to drug binding such as the distribution of SNPs in proximal protein pockets, thermo-chemical stability, interactions with drugs and physico-chemical properties. The VnD database, available at http://vnd.kobic.re.kr:8080/VnD/ or vandd.org, would be a useful platform for researchers studying the underlying mechanism for association among genetic variations, diseases and drugs.
Published in January 2011
READ PUBLICATION →

ChemProt: a disease chemical biology database.

Authors: Taboureau O, Nielsen SK, Audouze K, Weinhold N, Edsgard D, Roque FS, Kouskoumvekaki I, Bora A, Curpan R, Jensen TS, Brunak S, Oprea TI

Abstract: Systems pharmacology is an emergent area that studies drug action across multiple scales of complexity, from molecular and cellular to tissue and organism levels. There is a critical need to develop network-based approaches to integrate the growing body of chemical biology knowledge with network biology. Here, we report ChemProt, a disease chemical biology database, which is based on a compilation of multiple chemical-protein annotation resources, as well as disease-associated protein-protein interactions (PPIs). We assembled more than 700,000 unique chemicals with biological annotation for 30,578 proteins. We gathered over 2-million chemical-protein interactions, which were integrated in a quality scored human PPI network of 428,429 interactions. The PPI network layer allows for studying disease and tissue specificity through each protein complex. ChemProt can assist in the in silico evaluation of environmental chemicals, natural products and approved drugs, as well as the selection of new compounds based on their activity profile against most known biological targets, including those related to adverse drug events. Results from the disease chemical biology database associate citalopram, an antidepressant, with osteogenesis imperfect and leukemia and bisphenol A, an endocrine disruptor, with certain types of cancer, respectively. The server can be accessed at http://www.cbs.dtu.dk/services/ChemProt/.
Published in January 2011
READ PUBLICATION →

EDULISS: a small-molecule database with data-mining and pharmacophore searching capabilities.

Authors: Hsin KY, Morgan HP, Shave SR, Hinton AC, Taylor P, Walkinshaw MD

Abstract: We present the relational database EDULISS (EDinburgh University Ligand Selection System), which stores structural, physicochemical and pharmacophoric properties of small molecules. The database comprises a collection of over 4 million commercially available compounds from 28 different suppliers. A user-friendly web-based interface for EDULISS (available at http://eduliss.bch.ed.ac.uk/) has been established providing a number of data-mining possibilities. For each compound a single 3D conformer is stored along with over 1600 calculated descriptor values (molecular properties). A very efficient method for unique compound recognition, especially for a large scale database, is demonstrated by making use of small subgroups of the descriptors. Many of the shape and distance descriptors are held as pre-calculated bit strings permitting fast and efficient similarity and pharmacophore searches which can be used to identify families of related compounds for biological testing. Two ligand searching applications are given to demonstrate how EDULISS can be used to extract families of molecules with selected structural and biophysical features.
Published in January 2011
READ PUBLICATION →

The Comparative Toxicogenomics Database: update 2011.

Authors: Davis AP, King BL, Mockus S, Murphy CG, Saraceni-Richards C, Rosenstein M, Wiegers T, Mattingly CJ

Abstract: The Comparative Toxicogenomics Database (CTD) is a public resource that promotes understanding about the interaction of environmental chemicals with gene products, and their effects on human health. Biocurators at CTD manually curate a triad of chemical-gene, chemical-disease and gene-disease relationships from the literature. These core data are then integrated to construct chemical-gene-disease networks and to predict many novel relationships using different types of associated data. Since 2009, we dramatically increased the content of CTD to 1.4 million chemical-gene-disease data points and added many features, statistical analyses and analytical tools, including GeneComps and ChemComps (to find comparable genes and chemicals that share toxicogenomic profiles), enriched Gene Ontology terms associated with chemicals, statistically ranked chemical-disease inferences, Venn diagram tools to discover overlapping and unique attributes of any set of chemicals, genes or disease, and enhanced gene pathway data content, among other features. Together, this wealth of expanded chemical-gene-disease data continues to help users generate testable hypotheses about the molecular mechanisms of environmental diseases. CTD is freely available at http://ctd.mdibl.org.
Published in January 2011
READ PUBLICATION →

ASD: a comprehensive database of allosteric proteins and modulators.

Authors: Huang Z, Zhu L, Cao Y, Wu G, Liu X, Chen Y, Wang Q, Shi T, Zhao Y, Wang Y, Li W, Li Y, Chen H, Chen G, Zhang J

Abstract: Allostery is the most direct, rapid and efficient way of regulating protein function, ranging from the control of metabolic mechanisms to signal-transduction pathways. However, an enormous amount of unsystematic allostery information has deterred scientists who could benefit from this field. Here, we present the AlloSteric Database (ASD), the first online database that provides a central resource for the display, search and analysis of structure, function and related annotation for allosteric molecules. Currently, ASD contains 336 allosteric proteins from 101 species and 8095 modulators in three categories (activators, inhibitors and regulators). Proteins are annotated with a detailed description of allostery, biological process and related diseases, and modulators with binding affinity, physicochemical properties and therapeutic area. Integrating the information of allosteric proteins in ASD should allow for the identification of specific allosteric sites of a given subtype among proteins of the same family that can potentially serve as ideal targets for experimental validation. In addition, modulators curated in ASD can be used to investigate potent allosteric targets for the query compound, and also help chemists to implement structure modifications for novel allosteric drug design. Therefore, ASD could be a platform and a starting point for biologists and medicinal chemists for furthering allosteric research. ASD is freely available at http://mdl.shsmu.edu.cn/ASD/.
Published in January 2011
READ PUBLICATION →

DDPC: Dragon Database of Genes associated with Prostate Cancer.

Authors: Maqungo M, Kaur M, Kwofie SK, Radovanovic A, Schaefer U, Schmeier S, Oppon E, Christoffels A, Bajic VB

Abstract: Prostate cancer (PC) is one of the most commonly diagnosed cancers in men. PC is relatively difficult to diagnose due to a lack of clear early symptoms. Extensive research of PC has led to the availability of a large amount of data on PC. Several hundred genes are implicated in different stages of PC, which may help in developing diagnostic methods or even cures. In spite of this accumulated information, effective diagnostics and treatments remain evasive. We have developed Dragon Database of Genes associated with Prostate Cancer (DDPC) as an integrated knowledgebase of genes experimentally verified as implicated in PC. DDPC is distinctive from other databases in that (i) it provides pre-compiled biomedical text-mining information on PC, which otherwise require tedious computational analyses, (ii) it integrates data on molecular interactions, pathways, gene ontologies, gene regulation at molecular level, predicted transcription factor binding sites on promoters of PC implicated genes and transcription factors that correspond to these binding sites and (iii) it contains DrugBank data on drugs associated with PC. We believe this resource will serve as a source of useful information for research on PC. DDPC is freely accessible for academic and non-profit users via http://apps.sanbi.ac.za/ddpc/ and http://cbrc.kaust.edu.sa/ddpc/.