Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in July 2010
READ PUBLICATION →

Structure-based and shape-complemented pharmacophore modeling for the discovery of novel checkpoint kinase 1 inhibitors.

Authors: Chen XM, Lu T, Lu S, Li HF, Yuan HL, Ran T, Liu HC, Chen YD

Abstract: Checkpoint kinase 1 (Chk1), a member of the serine/threonine kinase family, is an attractive therapeutic target for anticancer combination therapy. A structure-based modeling approach complemented with shape components was pursued to develop a reliable pharmacophore model for ATP-competitive Chk1 inhibitors. Common chemical features of the pharmacophore model were derived by clustering multiple structure-based pharmacophore features from different Chk1-ligand complexes in comparable binding modes. The final model consisted of one hydrogen bond acceptor (HBA), one hydrogen bond donor (HBD), two hydrophobic (HY) features, several excluded volumes and shape constraints. In the validation study, this feature-shape query yielded an enrichment factor of 9.196 and performed fairly well at distinguishing active from inactive compounds, suggesting that the pharmacophore model can serve as a reliable tool for virtual screening to facilitate the discovery of novel Chk1 inhibitors. Besides, these pharmacophore features were assumed to be essential for Chk1 inhibitors, which might be useful for the identification of potential Chk1 inhibitors.
Published in July - August 2010
READ PUBLICATION →

Systems pharmacology.

Authors: Boran AD, Iyengar R

Abstract: We examine how physiology and pathophysiology are studied from a systems perspective, using high-throughput experiments and computational analysis of regulatory networks. We describe the integration of these analyses with pharmacology, which leads to new understanding of drug action and enables drug discovery for complex diseases. Network studies of drug-target relationships can serve as an indication on the general trends in the approved drugs and the drug-discovery progress. There is a growing number of targeted therapies approved and in the pipeline, which meets a new set of problems with efficacy and adverse effects. The pitfalls of these mechanistically based drugs are described, along with how a systems view of drug action is increasingly important to uncover intricate signaling mechanisms that play an important part in drug action, resistance mechanisms, and off-target effects. Computational methodologies enable the classification of drugs according to their structures and to which proteins they bind. Recent studies have combined the structural analyses with analysis of regulatory networks to make predictions about the therapeutic effects of drugs for complex diseases and possible off-target effects.
Published on July 27, 2010
READ PUBLICATION →

Publishing Chinese medicine knowledge as Linked Data on the Web.

Authors: Zhao J

Abstract: BACKGROUND: Chinese medicine (CM) draws growing attention from Western healthcare practitioners and patients. However, the integration of CM knowledge and Western medicine (WM) has been hindered by a barrier of languages and cultures as well as a lack of scientific evidence for CM's efficacy and safety. In addition, most of CM knowledge published with relational database technology makes the integration of databases even more challenging. METHODS: Linked Data approach was used in publishing CM knowledge. This approach was applied to publishing a CM linked dataset, namely RDF-TCM http://www.open-biomed.org.uk/rdf-tcm/ based on TCMGeneDIT, which provided association information about CM in English. RESULTS: The Linked Data approach made CM knowledge accessible through standards-compliant interfaces to facilitate the bridging of CM and WM. The open and programmatically-accessible RDF-TCM facilitated the creation of new data mash-up and novel federated query applications. CONCLUSION: Publishing CM knowledge in Linked Data provides a point of departure for integration of CM databases.
Published on July 26, 2010
READ PUBLICATION →

Network-based relating pharmacological and genomic spaces for drug target identification.

Authors: Zhao S, Li S

Abstract: BACKGROUND: Identifying drug targets is a critical step in pharmacology. Drug phenotypic and chemical indexes are two important indicators in this field. However, in previous studies, the indexes were always isolated and the candidate proteins were often limited to a small subset of the human genome. METHODOLOGY/PRINCIPAL FINDINGS: Based on the correlations observed in pharmacological and genomic spaces, we develop a computational framework, drugCIPHER, to infer drug-target interactions in a genome-wide scale. Three linear regression models are proposed, which respectively relate drug therapeutic similarity, chemical similarity and their combination to the relevance of the targets on the basis of a protein-protein interaction network. Typically, the model integrating both drug therapeutic similarity and chemical similarity, drugCIPHER-MS, achieved an area under the Receiver Operating Characteristic (ROC) curve of 0.988 in the training set and 0.935 in the test set. Based on drugCIPHER-MS, a genome-wide map of drug biological fingerprints for 726 drugs is constructed, within which unexpected drug-drug relations emerged in 501 cases, implying possible novel applications or side effects. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that the integration of phenotypic and chemical indexes in pharmacological space and protein-protein interactions in genomic space can not only speed the genome-wide identification of drug targets but also find new applications for the existing drugs.
Published on July 16, 2010
READ PUBLICATION →

Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule.

Authors: Mishra NK, Agarwal S, Raghava GP

Abstract: BACKGROUND: Different isoforms of Cytochrome P450 (CYP) metabolized different types of substrates (or drugs molecule) and make them soluble during biotransformation. Therefore, fate of any drug molecule depends on how they are treated or metabolized by CYP isoform. There is a need to develop models for predicting substrate specificity of major isoforms of P450, in order to understand whether a given drug will be metabolized or not. This paper describes an in-silico method for predicting the metabolizing capability of major isoforms (e.g. CYP 3A4, 2D6, 1A2, 2C9 and 2C19). RESULTS: All models were trained and tested on 226 approved drug molecules. Firstly, 2392 molecular descriptors for each drug molecule were calculated using various softwares. Secondly, best 41 descriptors were selected using general and genetic algorithm. Thirdly, Support Vector Machine (SVM) based QSAR models were developed using 41 best descriptors and achieved an average accuracy of 86.02%, evaluated using fivefold cross-validation. We have also evaluated the performance of our model on an independent dataset of 146 drug molecules and achieved average accuracy 70.55%. In addition, SVM based models were developed using 26 Chemistry Development Kit (CDK) molecular descriptors and achieved an average accuracy of 86.60%. CONCLUSIONS: This study demonstrates that SVM based QSAR model can predict substrate specificity of major CYP isoforms with high accuracy. These models can be used to predict isoform responsible for metabolizing a drug molecule. Thus these models can used to understand whether a molecule will be metabolized or not. This is possible to develop highly accurate models for predicting substrate specificity of major isoforms using CDK descriptors. A web server MetaPred has been developed for predicting metabolizing isoform of a drug molecule http://crdd.osdd.net/raghava/metapred/.
Published on July 1, 2010
READ PUBLICATION →

Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles.

Authors: Glazer ES, Curley SA

Abstract: BACKGROUND: Nonionizing radiation, such as radiofrequency field and near infrared laser, induces thermal cytotoxicity in cancer cells treated with gold nanoparticles. Quantum dots are fluorescent semiconducting nanoparticles that were hypothesized to induce similar injury after radiofrequency field irradiation. METHODS: Gold nanoparticles and 2 types of quantum dot (cadmium-selenide and indium-gallium-phosphide) conjugated to cetuximab (C225), a monoclonal antibody against human epidermal growth factor receptor (EGFR)-1, demonstrated concentration-dependent heating in a radiofrequency field. The authors investigated the effect of radiofrequency field exposure after targeted nanoparticle treatment in a coculture of 2 human cancer cell lines that have differential EGFR-1 expression (a high-expressing pancreatic carcinoma, Panc-1, and a low-expressing breast carcinoma, Cama-1). RESULTS: Radiofrequency revealed that Panc-1 or Cama-1 cells not containing gold nanoparticles or quantum dots had a viability of > 92%. The viability of Panc-1 cells exposed to the radiofrequency field after treatment with 50 nM Au-C225 was 39.4% +/- 8.3% without injury to bystander Cama-1 cells (viability was 93.7% +/- 1.0%; P approximately .0006). Panc-1 cells treated with targeted cadmium-selenide quantum dots were only 47.5% viable after radiofrequency field exposure (P< .0001 compared with radiofrequency only Panc-1 control cells). Targeted indium-gallium-phosphide quantum dots decreased Panc-1 viability to 58.2% +/- 3.4% after radiofrequency field exposure (P = approximately .0004 compared with Cama-1 and Panc-1 controls). CONCLUSIONS: The authors selectively induced radiofrequency field cytotoxicity in Panc-1 cells without injury to bystander Cama-1 cells using EGFR-1-targeted nanoparticles, and demonstrated an interesting bifunctionality of fluorescent nanoparticles as agents for both cancer cell imaging and treatment.
Published on June 15, 2010
READ PUBLICATION →

Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework.

Authors: Yamanishi Y, Kotera M, Kanehisa M, Goto S

Abstract: MOTIVATION: In silico prediction of drug-target interactions from heterogeneous biological data is critical in the search for drugs and therapeutic targets for known diseases such as cancers. There is therefore a strong incentive to develop new methods capable of detecting these potential drug-target interactions efficiently. RESULTS: In this article, we investigate the relationship between the chemical space, the pharmacological space and the topology of drug-target interaction networks, and show that drug-target interactions are more correlated with pharmacological effect similarity than with chemical structure similarity. We then develop a new method to predict unknown drug-target interactions from chemical, genomic and pharmacological data on a large scale. The proposed method consists of two steps: (i) prediction of pharmacological effects from chemical structures of given compounds and (ii) inference of unknown drug-target interactions based on the pharmacological effect similarity in the framework of supervised bipartite graph inference. The originality of the proposed method lies in the prediction of potential pharmacological similarity for any drug candidate compounds and in the integration of chemical, genomic and pharmacological data in a unified framework. In the results, we make predictions for four classes of important drug-target interactions involving enzymes, ion channels, GPCRs and nuclear receptors. Our comprehensively predicted drug-target interaction networks enable us to suggest many potential drug-target interactions and to increase research productivity toward genomic drug discovery. SUPPLEMENTARY INFORMATION: Datasets and all prediction results are available at http://cbio.ensmp.fr/~yyamanishi/pharmaco/. AVAILABILITY: Softwares are available upon request.
Published on June 15, 2010
READ PUBLICATION →

Inhibitory effect of flavonoids on mutant H-Rasp protein.

Authors: Masoodi TA, Alhamdanz AH

Abstract: Mutant form of H-Ras (Harvey-Ras) proteins are found in almost 10%-25% of human tumours. Mutational activation transforms it into an oncogenic form, which results in the loss of intrinsic GTPase function and therefore the protein is constitutively in the active, GTP-bound state and is continuously sending signals for cell growth and proliferation. In the present insilico study, the inhibitory effect of different flavonoid compounds on mutant H Ras protein p21 has been assessed. In addition, inhibitory effect of flavonoids is compared with 3 known anticancer drugs. Upon docking, it was found that flavonoids such as Naringenin, Daidzein, and Hesperetin showed highest affinity (most negative DeltaG), while Rutin showed no affinity towards mutant H Ras. The 3 clinical anticancer agents (Erlotinib, Letrozole and Exemestane) showed binding energies in the range of -1.11 to -5.51 kcal/mol which is comparatively lower than the flavonoids indicating efficacy of flavonoids in the treatment of cancer with little or no cytotoxicity. Our study demonstrates that flavonoids (particularly Naringenin, Daidzein, and Hesperetin) are the effective drugs to inhibit function of mutant H-Ras P21 protein, which in turn arrests the process of cell growth and proliferation of the cancer cell.
Published on June 10, 2010
READ PUBLICATION →

A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization.

Authors: van der Horst E, Peironcely JE, Ijzerman AP, Beukers MW, Lane JR, van Vlijmen HW, Emmerich MT, Okuno Y, Bender A

Abstract: BACKGROUND: G protein-coupled receptors (GPCRs) represent a family of well-characterized drug targets with significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual GPCRs and their subtypes. Previous phylogenetic classifications were all based on the sequences of receptors, adding only minor information about the ligand binding properties of the receptors. In this work, we compare a sequence-based classification of receptors to a ligand-based classification of the same group of receptors, and evaluate the potential to use sequence relatedness as a predictor for ligand interactions thus aiding the quest for ligands of orphan receptors. RESULTS: We present a classification of GPCRs that is purely based on their ligands, complementing sequence-based phylogenetic classifications of these receptors. Targets were hierarchically classified into phylogenetic trees, for both sequence space and ligand (substructure) space. The overall organization of the sequence-based tree and substructure-based tree was similar; in particular, the adenosine receptors cluster together as well as most peptide receptor subtypes (e.g. opioid, somatostatin) and adrenoceptor subtypes. In ligand space, the prostanoid and cannabinoid receptors are more distant from the other targets, whereas the tachykinin receptors, the oxytocin receptor, and serotonin receptors are closer to the other targets, which is indicative for ligand promiscuity. In 93% of the receptors studied, de-orphanization of a simulated orphan receptor using the ligands of related receptors performed better than random (AUC > 0.5) and for 35% of receptors de-orphanization performance was good (AUC > 0.7). CONCLUSIONS: We constructed a phylogenetic classification of GPCRs that is solely based on the ligands of these receptors. The similarities and differences with traditional sequence-based classifications were investigated: our ligand-based classification uncovers relationships among GPCRs that are not apparent from the sequence-based classification. This will shed light on potential cross-reactivity of GPCR ligands and will aid the design of new ligands with the desired activity profiles. In addition, we linked the ligand-based classification with a ligand-focused sequence-based classification described in literature and proved the potential of this method for de-orphanization of GPCRs.
Published on June 4, 2010
READ PUBLICATION →

Analysis and prediction of the metabolic stability of proteins based on their sequential features, subcellular locations and interaction networks.

Authors: Huang T, Shi XH, Wang P, He Z, Feng KY, Hu L, Kong X, Li YX, Cai YD, Chou KC

Abstract: The metabolic stability is a very important idiosyncracy of proteins that is related to their global flexibility, intramolecular fluctuations, various internal dynamic processes, as well as many marvelous biological functions. Determination of protein's metabolic stability would provide us with useful information for in-depth understanding of the dynamic action mechanisms of proteins. Although several experimental methods have been developed to measure protein's metabolic stability, they are time-consuming and more expensive. Reported in this paper is a computational method, which is featured by (1) integrating various properties of proteins, such as biochemical and physicochemical properties, subcellular locations, network properties and protein complex property, (2) using the mRMR (Maximum Relevance & Minimum Redundancy) principle and the IFS (Incremental Feature Selection) procedure to optimize the prediction engine, and (3) being able to identify proteins among the four types: "short", "medium", "long", and "extra-long" half-life spans. It was revealed through our analysis that the following seven characters played major roles in determining the stability of proteins: (1) KEGG enrichment scores of the protein and its neighbors in network, (2) subcellular locations, (3) polarity, (4) amino acids composition, (5) hydrophobicity, (6) secondary structure propensity, and (7) the number of protein complexes the protein involved. It was observed that there was an intriguing correlation between the predicted metabolic stability of some proteins and the real half-life of the drugs designed to target them. These findings might provide useful insights for designing protein-stability-relevant drugs. The computational method can also be used as a large-scale tool for annotating the metabolic stability for the avalanche of protein sequences generated in the post-genomic age.